Cubit 12.1 User Documentation

Table of Contents

CUBIT 12.1 User Documentation 1
Key Features 3
Geometry Creation, Modification, and Healing 3
Non-Manifold Topology 3
Geometry Decomposition 3
Mesh Generation 3
Boundary Conditions 3
Element Types 4
Graphics Display Capabilities 4
Graphical User Interface 4
Command Line Interface 4
Hardware Requirements 5
Licensing, Distribution and Installation 6
Trademark Notice 7
How to Use This Manual 8
Introduction 9
CUBIT Mailing Lists 10
Problem Reports and Enhancement Requests 11
Starting and Exiting a CUBIT Session 12
Starting the Session 12
Windows File Association 12
Exiting the Session 12
Resetting the Session 12
Abort Handling 12
Execution Command Syntax 14
Initialization Files 17
Environment Variables 18
Command Syntax 20
Command Line Hel 22
Environment Commands 23
Working Directory 23
File Manipulation 23
CPU Time 24
Comment 24

Table of Contents

History 24
Error Logging 24
Determining the CUBIT Version 24
Echoing Commands 24
Digits Displayed 24
Saving and Restoring a Cubit Session 26
CUBIT File Method 26

I DO ettty e e 27
EXIDO eyttt 27
Interrupting Running Tasks 28
CUBIT Application Window. 29
Context Sensitive Help in the GUI 30
Customizing the Application Window 30
Interrupting Running Tasks 32
Command Panel Functionality 33
ID Input Entry Methods 34
Right-Click Context Menu for ID Input Fields 35
Value Fields 35
Advancing Pickwidgets 36
View Navigation in the GUI 37
Rotations 37
Zooming 38
Panning 39
Selecting Entities in the GUI 40
Pre-Selection 41
Polygon and Box Select 41
Key Press Commands for the GUI 42
Right Click Commands for the GUI Graphics Window 43
With ENtity SEIECIEA. .. .eeeiuiiiiiiiiiiii ittt ettt ettt s i 43
WithOUt ENtity SEIECIEM.uuiieiiiee ittt ettt ettt ettt e ettt e st e e st e et e e seeent e e et e anneeeanes 43
Repositioning Nodes in the GUI 44
Moving Nodes by XYZ offsets 44
Moving Nodes Normal to Surfaces 45
Viewing Curve Valence 47
Geometry Tree 48
Drag and Drop 50
Picked Group 50
Right-Click Menu Functions 50

Cubit 12.1 User Documentation

Geometry Power Tools 52
Geometry Analysis Tools 52
Geometry Repair Tools 54
Right Click Menu 56

Meshing Tools 57
Right Click Context Menu 57

Mesh Quality Tools 59
Mesh Quality Tool Buttons 60
Right-Click Context Menu ltems 60

Property Editor 62
Editing Entity Attributes from the Property Editor 63

GENEIAl AMIDULES. ...uveiiiiiiiee ettt ettt ettt ettt ettt ettt e e e 63
Geometry Attributes.... ...63
MESHING AIIDULES. ...ttt ettt e e ettt e e e st e e e 63
Boundary Condition AfIDULES.ueieeeiiieie ittt ettt ettt ettt e e et e e et ettt st et e e s e e neeaees 64
Metadata AtIDULES.ueee sttt it e et e s e e s e e e aaees 64

Command Line Workspace 65

Command Window 65
ENteriNg COMMANGS. ...ueiiiiiiiiee ettt ettt ettt ettt ettt ettt ettt e ettt e e e e ee e e 65
Repeating COMMANGS. ...eeeiuiiiiieiiiee ettt ettt ettt ettt ettt ettt ettt ettt et ettt ettt e et ee e e 65
Interrupting RUNNING TaSKS. .. .ueuiee ettt ettt e ettt ettt e e it et e e i e et seteeeesieeeeeeans 66

Error Window 66

History Window 66

Script Window 66

Docking and Undocking the Input Window 67

Journal File Editor 68
Journal Editor Toolbar 69

Toolbars 70
File 70
Display 70
Select 71

Options Menu 73
Custom Tools 73
Display Preferences 73
General Preferences 73
Geometry Defaults 74
History Preferences 74

Cubit HiStOry PrefereNCeS. ...uueiii ittt ettt ettt ettt e et e e 74
Label Defaults 74
Layout Preferences 75

CUDIt LayOUt SEEHNGS. ceeivieiiie ittt ettt ettt ettt ettt ettt e e e et eeeans 75
Mesh Defaults 75
Mouse Settings 75
Post Processor Settings 75
Quality Defaults 75

Table of Contents

Creating Custom Toolbar Buttons 76
Undo Button 77
Limitations 77
Journal File Creation and Playback 78
Recording a Session 78
Replaying a Session 78
Controlling Playback of Journal Files 79
Automatic Journal File Creation 80
Controlling Automatic Journal File Creation 80
Recording Graphics Commands 80
Recording Entity IDs and Names 80
Recording APREPRO Commands 80
Recording Errors 81
Idless Journal Files 82
Command Line View Navigation: Zoom, Pan and Rotate 83
Rotation 83
Panning 83
Zooming 83
Mouse Based View Navigation: Zoom, Pan and Rotate 85
Changing the View Transformation Button Bindings 86
Saving and Restoring Views 86
Updating the Display 88
Prevent Graphics From Updating 88
Graphics Modes 89
Truehiddenline Options 90
Displaying Using the Element Facets 90
Displaying Composite Surface Lines 90
Drawing and Highlighting Entities 92
Drawing Other Objects 92
Displaying Entity OreNtatioN.eeeiueeiiiiiiiiiee ittt ettt ettt ettt e e 92
Volume SOUICES AN TANQEES. .uuueeieieieete ettt ettt et e e e ettt s ettt e e sttt esei e e e saeeeeaaa 93
IMOAEL AXIS ettt ettt ettt et ettt e et ettt e ee e e et i eeeateeeas 93
Surface |SOPArAMEIET LINES. . ..eei et eiiie ittt ettt ettt ettt ettt ettt ettt et eesteeeaeeenteeeteeeateeeaseeenteesineaeanes 93
SUMACE OVOIAP. ettt ettt ettt ettt e e sttt e ettt st e e e e e s aee e 93
GEOMEITY PrOVIBW. ..ueiiiiitieiei ittt ettt ettt ettt et ettt ettt ettt ettt ettt e e e e e eeeaes 93
Mesh Visualization 94
Notes on Mesh Slicing 94
Mesh Slicing Command 94
Graphics Clipping Plane 95
Examples 96

Cubit 12.1 User Documentation

Entity Labels 97
Colors 99
Specifying Colors in Commands 99
User-Defined Colors 99
Assigning Colors 100
Geometry and Mesh Entity Visibility. 101
Graphics Camera 102
Changing Camera Attributes Directly 102
Graphics Lighting Model 104
Graphics Window Size and Position 105
Using Multiple Windows 105
Saving Graphics Views 106
Hardcopy Output 107
Screen Capture Programs 107
Miscellaneous Graphics Options 108
Silhouette Lines 108
Line Width 108
Highlight Line Width 108
Text Size 108
Point Size 109
Graphics Status 109
Graphics Scale 109
Model Axis 109
Corner Axis (Triad) 109
Resetting the Graphics 109
Shrink 110
Facet Tolerance 111
Command Line Entity Specification 112
Types of Entity Range Input 112
Precedence of "Except" and "In" 113
Placement in CUBIT Commands 114
Entity Selection 115
Environment Control 116
Extended Command Line Entity Specification 117
Extended Parsing Syntax 117
Keywords 117
Functions 118
Precedence 119
Selecting Entities with the Mouse 120
Entity Selection 121
Query Selection 122

vi

Table of Contents

Multiple Selected Entities 122
Information About the Selection 122
Picked Group 122
Substituting Selection into Other Commands 122
Specifying a Location 124
Position (XYZ values) 124
Last Location Used in a Command 124
Node or Vertex 124
On a Curve 125
On a Surface 125
On a Plane 125
Center 125
Extrema 125
Fire Ray 125
Between 125
Move 126
Swing 126
Multiple Location Specification 127
Previewing a Location 127
Specifying a Location on a Curve 128
Start, Midpoint, or End 128
Fraction 128
Distance 128
{Close_To|At} Location 129
Extrema 129
Segment 129
Crossing 129
Previewing a Location on a Curve 130
Specifying a Direction 131
Vector (XYZ values) 131
Last Direction Used 131
Positive or Negative X,Y,Z Direction Vectors 131
On Curve Tangent 131
On Surface Normal 132
From Location 132
Rotate 132
Cross 133
Reverse 133
Previewing a Direction 133
Specifying an Axis 134
Last 134
Specify an origin and a vector 134
Revolve an axis about an axis 134
Previewing an Axis 135
Specifying a Plane 136
Location and Normal Vector 136
Location and Two Vectors on the Plane 137
Two Locations and Vector on the Plane 137
Three Points on the Plane 137
Plane defined by a Surface 138
Plane Normal to a Curve 139

vii

Cubit 12.1 User Documentation

Plane Defined by a Non-linear curve 139
Plane Defined by a two linear curves 139
Normal Vector and Coefficient 139
Coordinate Plane 140
Last Location Used 140
Previewing a Plane 140
Preview a Cylindrical Plane 140
Drawing a Location, Direction, or Axis 142
List Model Summary 143
List Geometry 144
List Mesh 146
List Special Entities 147
List Cubit Environment 148
Message Output Settings 148
Graphical Display Information 150
Memory Usage Information 150
ACIS Geometry Kernel 151
Granite Geometry Kernel 152
Limitations 152
Mesh-Based Geometry 154
Creating Mesh-Based Geometry Models 154
Improving Mesh-Based Geometry Models for Meshing 155
Meshing Mesh-Based Models 156
Exporting Mesh-Based Geometry 156
Importing ACIS Files 157
Import Options 157
Importing ACIS files at startup 157
Importing FASTQ Files 158
Importing STEP Files 159
Import Options 159
Exporting a STEP file from Pro/Engineer 159
Setting Up CUBIT to Use STEP Tools 159
Importing IGES Files 161
Import Options 161
Importing Facet Files 162
Facet File Format 163
Feature Angle 163
Smooth Curves and Surfaces 163
Merge 163

viii

Table of Contents

Make elements 164
Stitch 164
Improve 164
Importing Granite Files 166
Creating Vertices 167
Creating Curves 169
Creating Surfaces 172
Creating Bodies 179
Creating Bricks 183
Creating Cylinders 184
184

Creating Prisms 185
Creating Frustums 186
Creating Pyramids 187
Creating Spheres 188
Creating Toruses 189
189

Align Command 190
Copy Command 191
Move Command 192
Moving Other Geometric Entities 192
Moving Bodies Relative to Other Geometric Entities 192
Moving Merged Entities 192
Move Undo 193

Cubit 12.1 User Documentation

Scale Command 194
Rotate Command 195
Reflect Command 196
Intersect 197
Subtract 198
Unite 199
Chop Command 200
Web Cutting by Sweeping Curves or Surfaces 201
Web Cutting by Sweeping a Surface Along a Trajectory 201
Web Cutting by Sweeping a Surface About an Axis 202
Web Cutting by Sweeping a Curve(s) Along a Trajectory 202
Web Cutting by Sweeping a Curve(s) About an Axis 202
Web Cutting Options 203
Web Cutting with a Planar or Cylindrical Surface 204
Coordinate Plane 204
Planar Surface 204
Plane from 3 Points 204
Plane Normal to Curve 204
General Plane Specification 205
Cylindrical Surface 205
Web Cutting using a Tool or Sheet Body 206
Web Cutting with an Arbitrary Surface 207
Split Curve 208
Split Periodic Surfaces 209
Split Surface 210
Split Across 210
Split Extend 211
Split (Automatically) 213
Split Skew 224
Section Command 226
Separating Multi-Volume Bodies 227
Separating Surfaces from Bodies 228
Analyzing Geometry 229
Healer Settings 229

Table of Contents

Healing Attributes 230
Auto Healing 231
Spline Removal 232
What if Healing is Unsuccessful? 233
Tweaking Vertices 234
Tweaking a Vertex With a Chamfer 234
Tweaking a Vertex With a Non-Equal Chamfer 235
Tweaking a Vertex With a Fillet Radius 235
Tweaking Curves 236
Create a Chamfer or Fillet 236
Tweaking a Curve Using an Offset Distance 237
Removing a Curve 237
Tweaking a Curve Using Target Surfaces, Curves, or Plane 238
Tweaking a Pair of Curves to a Corner 239
Tweaking Surfaces 241
Tweaking a Surface Using an Offset 241
Tweaking a Surface by Moving 241
Tweaking Surfaces to Target Surfaces 242
Removing a Surface 242
Tweaking a Conical Surface 243
Tweaking Doublers to Target Surfaces 244
Removing Holes and Slots from Sheet Bodies 245
Removing Fillets from Sheet Bodies 246
Tweak Remove Topology 248
EXAIMDIE ettt ettt ettt ettt ettt et et e e e eeea i 248
Tweak Volume Bend 251
Removing Vertices 252
Removing Surfaces 253
Remove Sliver Surface 253
Automatic Forced Sweepability 254
Automatic Small Curve Removal 255
Automatic Small Surface Removal 256
Automatic Surface Split 257
Regularizing Geometry 258
Finding Surface Overlap 259
Facetted Representation 259
Find Overlap Settings 260

Xi

Cubit 12.1 User Documentation

Validating Geometry 262
Debugging Geometry 263
Geometry Accuracy 264
Trimming and Extending Curves 265
Trimming a Curve 265
Extending a Curve 266
Stitching Sheet Bodies 267
Imprinting Geometry 268
Regular Imprinting 268
Tolerant Imprinting 268
Mesh-Based Imprinting 269
Imprint Settings 269
Merging Geometry 270
Merge geometry automatically 270
Test for merging in a specified group of geometry 270
Force merge specified geometry entities 270
Preventing geometry from merging 271
Other Merge Commands 271
Examining Merged Entities 272
Merge Tolerance 273
Finding Nearly Coincident Entities 273
Unmerging 274
Using Geometry Merging to Verify Geometry 275
Composite Curves 276
Composite Surfaces 277
Controlling the Surface Evaluation Method for Composite Surfaces 277
Composite Determination 277
Partitioned Curves 279
Partitioned Surfaces 280
Partitioning with Vertices and Nodes 280
Partitioning With Hard POINTS.......ueeeiieeiiiiiiiiiee ettt ettt ettt e ettt e e e et e e eeaieeeeaes 280
Partitioning With POIYINES.c.ueiiiiiiie ittt ettt ettt see e s e e eeeseeeseeaieeeneeenteeenneas 280
Partitioning with Curves 281
Partitioning with Mesh Edges 281
Partitioning with Faces or Triangles 281

xii

Table of Contents

Partitioned Volumes 283
Using Mesh Intersections to Partition Surfaces 284
Removing Partitions 286
Collapse Angle 287
Collapse Curve 290
Collapse Surface 292
Simplify Geometry 294
Feature Angle 295
Automatically Compositing Curves 295
Respecting Vertices, Curves and Surfaces 295
Respecting Imprints 295
Using Local Normals 296
Other Options 296
Deleting Virtual Geometry 297
Removing Virtual Geometry 297
Using The Delete Command With Composites 297
Using the Delete Command With Partitions 297
Geometry Orientation 298
Adjusting Orientation 298
Basic Group Operations 299
Geometry Groups 299
Modifying groups by comparing common entities 299
Group Booleans 300
Mesh Groups 300
Group Copy 300
Group Transformations 300
Deleting Groups 301
Cleaning Out Groups 301
Groups in Graphics 302
Propagated Hex Groups 303
Propagated Hex Group Starting on a Surface 303
ENdiNg at @ SUMACE. . .ccuuiiiiiiiiiiiiiiiiii ettt 303
NUMDEE Of TIMIES. ettt ettt ettt e ettt e ettt e et ettt e e st eeeseteeeeesiteeeeseatteeeeasens 303
Ending at a Surface With MUIIPIE.ueeiiieiiiiieiiiiii ettt i 303

Number of Times with Multiple...
Ending at Surface with Direction

Number of TIMEeS With DIir€CHION.eieeeeieeeiee ettt ettt et ettt ettt e eeeeteeseesieeeseeeiteeeseeeaeeeanseeeas
Propagated Hex Group Starting on a Face 304
ENdiNg at @ SUMACE. . .ccuuiiiiiiiiiieiiiie ettt ettt 305
ENAING At @ FACE. .eiiiiiiiiieiieee ettt s e e ettt st e e e st et s s e e eaaaees 305
NUMDEE Of TIMIES. ettt ettt ettt e ettt e ettt e et ettt e e st eeeseteeeeesiteeeeseatteeeeasens 305
Ending at a Surface With MUIIPIE.ueeeeiiiie ittt e e 305
Ending at a Face With MUIIDIE........uueieieiieeeiiie ettt et st e e siee e e e 306

xiii

Cubit 12.1 User Documentation

Number of Times With MUIPIE.cc.vvieeeiiiiiii ettt ettt ettt e e, 306
Ending at Face With DIr€CHON. ..ueueiieeeeiiee ettt ettt e ittt e et st e e e st e e s ieeeeans 306
Ending at Surface With Dir€CHON.eeiieeeiie ittt ettt ettt et e et st e e e e e s 306
Number of TiIMeS With Dir€CHION.cueeeieei ittt ettt ettt ettt e ee e s esiee e s e e iteeeseeeneeaieeeeas 307
Naming Convention for Propagated Hex Groups 307
Seeded Mesh Groups 309
Quality Groups 311
Entity Names 312
Valid and Invalid Names 312
Reconciling Duplicate Names 312
Automatic Name Creation 312
Automatic Name Propagation 313
Naming Merged Entities 313
Entity IDs 315
Gaps in ID space 315
Renumbering IDs 315
Volume ID 315
Attribute Behavior 316
Attribute Types 317
Attribute Commands 318
Control By Attribute Type or Geometric Entity 318
Using CUBIT Attributes 319
Entity Measurement 320
Measure Between 320
Measure Small 320
Measure Angle 320
Measure Void 321
Working With Parts and Assemblies 322
Identifying Parts and Assemblies 322
Creating Parts and Assemblies 322
Deleting Parts and Assemblies 323
Associating Parts with Volumes 323
Viewing All Assembly Information at Once 323
Metadata Attributes 325
Part and Assembly Metadata Attributes 325
Viewing Part and Assembly Metadata Attribute Values 326
Modifying Metadata Attributes 326
Viewing and Modifying Global Metadata 326
Importing and Exporting Metadata 328
Importing Metadata 328
Exporting Metadata 328
Importing and Exporting DART Artifacts 328

Xiv

Table of Contents

Exporting ACIS Files 330
Exporting STEP Files 331
Exporting IGES Files 332
Exporting Granite Files 333
Exporting Facet Files 334
Geometry Deletion 335
Meshing the Geometry 336
Default Scheme and Interval Selection 336
Remeshing a Volume 336
Remeshing a SWept VOIUME MESN.....ccuuuiiiiiiiiiiiiiiiiii ettt 336
Continuing Meshing After a Mesh Failure 337
Interval Firmness 338
Precedence 338
Explicit Specification of Intervals 339
Automatic Specification of Intervals 340
Default auto interval specification 341
Maximum Spanning Angle on Arcs 341
Interval Matching 343
Periodic Intervals 345
Relative Intervals 346
Mesh Interval Preview 347
Bias, Dualbias 348
Circle 350
Curvature 351
Equal 352
Hole 353
Mapping 354
Pave 356
Element Shape Improvement 356
Controlling Flattening of Elements 357
Controlling the Grid Search for Intersection Checking 357
Controlling the Paver Sizing Function 357

XV

Cubit 12.1 User Documentation

Controlling Paver Cleanup 357
Pentagon 360
Pinpoint 362
Polyhedron 363
Sphere 366
STransition 367
Stretch 370
Stride 371
Submap 372
Surface Vertex Types 374

Surface Vertex Commands 374

Listing and Drawing Vertex Types 375

Triangle Vertex Types 375

Adjusting the Automatic Vertex Type Selection Algorithm 375

Volume Curve Types 376
Sweep. 377

Multisweep 379

Smoothing Swept Meshes 380

Some helpful hints in using sweep 381

Autosmooth 381

Grouping Sweepable Volumes 382
TetMesh 383

Using tets as the basis of an unstructured hexahedral mesh 383

Conforming the tetmesh to internal features 384

Generating a Tetmesh from a Skin of Triangles 385

XVi

Table of Contents

Tetprimitive 387
TriDelaunay 388
TriAdvance 389
TriMa 390
TriMesh 391
TriPave 393
TriPrimitive 394
Radialmesh 395
Dice 400
Refining a Mesh with Dicing 400
Detailed DiSCUSSION: . ettt ettt e e sttt e ettt ettt et e ettt et et e e e st e e s e e e et ae e e 400
Extended DiCing COMMEANGS.uvuiiiiiiiiiiee ettt ettt ettt ettt ettt et e e et e et e e e ea e 401
Constraining Nodes to Geometry: 402
Deleting a Fine Mesh 402
Interaction with Dicer Sheets 402
HTet 403
Unstructured 403
Structured 404
QTri 405
THex 407
TQuad 409
Copying a Mesh 410
Mirroring a Mesh 412
Automatic Scheme Selection 414
Default Scheme Selection 414
Auto Scheme Selection General Notes 414
Scheme Firmness 415
Surface Auto Scheme Selection 415
Volume Auto Scheme Selection 416
Parallel Meshing 417
Metrics for Edge Elements 418
Quality Metric Definitions: 418
Comments on Algebraic Quality Measures 418
Metrics for Triangular Elements 419
Approximate Triangular Quality Definitions: 419

xvii

Cubit 12.1 User Documentation

Comments on Algebraic Quality Measures 420
References for Triangular Quality Measures 420
Metrics for Quadrilateral Elements 421
Quadrilateral Quality Definitions 421
Comments on Algebraic Quality Measures 422
References for Quadrilateral Quality Measures 422
Details on Robinson Metrics for Quadrilaterals 422
Metrics for Tetrahedral Elements 424
Tetrahedral Quality Definitions 424
References for Tetrahedral Quality Measures 425
Metrics for Hexahedral Elements 426
Hexahedral Quality Definitions 426
References for Hexahedral Quality Measures 427
Mesh Quality Command Syntax 428
Quality Options 428

S O D ettt et ettt eeeeeeetttettttetieeieeeeeeeeetett et ettt ettt et te e et eeees 428
DIBW ittt 428

LS ettt ettt e etee e et ettt ettt et et ettt e et e e erereeeeee 429
Bl ettt ettt ettt ettt e ettt e ettt et e ettt et e ettt e sa e e st e e anteeaaeeeaes 429
Mesh Quality Example Output 431
Automatic Mesh Quality Assessment 434
Controlling Mesh Quality 435
Skew Control 435
Propagate Curve Bias 435
Adjust Boundary 435

Xviii

Table of Contents

Coincident Node Check 437
Mesh Topology Check 438
Centroid Area Pull 439
Equipotential 440
Laplacian 441
Smart Laplacian 442
Condition Number 443
Mean Ratio 444
Winslow. 445
Untangle 446
Edge Length 448
Mesh Refinement 449
Global Mesh Refinement 449
Refining at a Geometric or Mesh Feature 450
Hexahedral Refinement Using Sheet Insertion 452
Refining at 8 GEOMELIHC FOAIUMNE. ..uuuiiieiiiiiiiieee ettt ettt e et e e et e e e s eeeeaieeeesineeees 452
Refining along a path 452
Refining a Hex Sheet 453

HEX SO DI AWING . ettt ettt ettt ettt ettt ettt ettt e ettt e e et e e e te e et e e e st e eanteeeateeateeanntaesseeanneeees 454
Mesh Pillowing 455
Mesh Coarsening 457
Hexahedral Coarsening 457
Extracting @ Single HEX SN@ET......cieiuuiiiiiiiiiiiiiiiiiiie ettt ettt 457
Extracting multiple SheetS aloNg @ CUMNVE.....uuuiiiieeieeeiiiiee ittt ettt eeiee e e e st eeesieeeesieseeeeeass 457
UNIfOrM NEX COAISENMING. c..uuiiiiiiieii ettt ettt ettt ettt ettt ettt ettt e i eeeiieeeeeeeeee 458
Node and Nodeset Repositioning 459
Collapsing Mesh Edges 460
Align Mesh 461
Creating and Merging Mesh Elements 462
Creating Mesh Elements 462
Creating Hex and Tet ElEMENTS.uueieeiiie ittt ettt ettt e et e sieeeseeesteeaeeeneeaneeeeaneas 462
Creating Wedge EleMENTS.uuue ettt ettt ettt et e s st s e e e s e e e 463
Creating Face and Tri EI@MENES.uiiiiuuiiiiiiiiiiie ittt ettt ettt eeieeeet i eeenaens 464
Creating EAQe ElEMENTS. .. .uuiiii ettt ettt ettt et e e st e i e st e e s e et e e a e e e e 464
CreatiNng NOUES. ...ttt ettt ettt ettt e e et s 464
Merging Nodes 465

Xix

Cubit 12.1 User Documentation

Cleaning Up a Tetrahedral Mesh 466
Mesh Validity 467
Geometry Adaptive Sizing Function (Skeleton Sizing) 468
Skeleton Sizing Behaviors 470
Command Line Syntax 470
Basic Arguments 470
Scaling and ACCUIaCY ANQUMIENES:uuuitieeitie ettt ettt ettt ettt ettt ettt ettt ettt ettt ettt e e e eeesieeee 470
Advanced Arguments 471
471
471
Skeleton with Other Sizing Controls 471
Limitations 472
Bias Sizing Function 473
Constant Sizing Function 479
Curvature Sizing Function 480
Linear Sizing Function, 482
Interval Sizing Function 484
Inverse Sizing Function 485
Exodus ll-based Field Function 486
Curve Meshing with Exodus Il - based Field Functions 487
Importing Exodus Il Files 488
Importing a Free Mesh Without Geometry 488
Importing a Mesh Onto Existing Geometry 489
Importing a Mesh with NodeSet ASSOCIALIVITY.....eueuieeueieeiiiiiiiiiiiee ittt st e i e eaiees 489
Importing a Mesh onto MOdified GEOMEIY. .. .eueuueeeeeiiiiiieiiee ettt e i 489
MESH IMPOIt TOIEIANCE. 1.ttt ettt ettt e et e ettt et e e et e et e eeeeaese e s e eeneaeseeeaneeanteeeneeeaineeea 489
Specifying a Portion of the Mesh 10 be IMPOMEed.........ueeiueeiiiieiiiieee ettt see s i e i eiieeaeeeas 490
Unigue Genesis IDS and Shell OptiONS. . ..eeeuuueeeeiiiiiieeiieeeii ittt ettt ettt e ees e 490
NOAESEE OFAEING. ettt ettt ettt ettt ettt ettt ettt ettt eeeee 490
Creating Mesh-Based Geometry on Import 490
FIlE NAIM. .ttt ettt ettt e et et ettt e et n ettt aa e e e e st e e e eeeaaaes 490
BlOCKS . ettt et ittt et e et ettt e ettt ettt e e e e a it eeeaneeeees 490
SEAIM ID ..ttt ettt ey ettt ettt r ettt e n e e e s 491
N OO BSOS/ SIOESEES. ettt ittt ettt ettt e et ettt ettt et ettt e ettt e e ettt e et e et e e e etteeseteeentteeseeentteeanteeeaneeeanee 491
FQALUIE ANQIC. ..ttt ettt ettt e e et e et ee e e i 492
SmMOooth CUrves and SUMACES.ceiiueiiiiiiiiiiei ittt ettt ettt ettt ee e 492
Apply Deformations
O g ittt
MEIQJE NOUEBS. ...ttt ettt ettt ettt e ettt et e e ettt e et ettt e ta et e et e e e eaneeeaanees
EXPOM FACEES. ..ttt ettt
Importing a Preview Mesh 494

XX

Table of Contents

Importing Abaqus Files 495
Importing I-DEAS Files 496
Importing Patran Files 497
Importing 2D Exodus Files 498
Mesh Deletion 499
Automatic Mesh Deletion 499
Free Meshes 500
Creating a free mesh 500
Disassociating a mesh from itS EOMELIY. ..e.uuuiieei ittt e et eee e et eeeeieeeeieesiee e s e aieeennee 500
Creating Mesh-Based Geometry to fit a Free Mesh 500
Merging a free mesh 501
Free Mesh Transformation Operations 501
EXtruding MESh EIEMENES. ...ueiiiiiiiiiiiiiiee ettt ettt ettt ettt ettt ettt ettt e e 501
Offsetting MESH EIEMENES. ...eeiiiuiiiiiiiiiiiiiiieee ettt ettt ettt ettt ettt ettt it et e e et e 502
ReVOIVING MESH EIEMENES. ittt ettt ettt st e e et e e st eeesieee e s i 503
Smoothing a free mesh 504
Mesh quality on a free mesh 504
Mesh refinement on a free mesh 505
Cleaning up a free mesh 505
Assigning boundary conditions 505
Skinning a free mesh 506
Deleting free mesh elements 506
Bottom-up element creation 507
Exporting free meshes 507
Skinning a Mesh 508
Element Block Specification 509
Creating Element Blocks 509
Assigning a Name or Description to an Element Block 510
Defining the Element Type 510
Default Element Blocks 510
Assigning Attributes to Blocks 511
Displaying Element Blocks 511
Deleting Element Blocks 511
Automatically Assigning Mesh Edges to a Block (Rebar) 512

Diagonal and Orthogonal Rebar Blocks

512

SPECIfYiNg & SEt Of NOUES.....ueiiuiiieiiiiiiiiiiieie ettt 513
Creating Beam Blocks (Spider) 513
2D Elements 514
Mixed Element Output 515
Adding Materials to a Block 515

Nodeset and Sideset Specification 516
Creating Nodesets and Sidesets 516
Assigning Names and Descriptions to Nodesets and Sidesets 517
Grouping Faces on a Surface into a Sideset 517

Grouping elements in VOIdS aNd @NCIOSUIES.uuieiiiiiiiiiieiiie ettt ettt ettt ettt ettt eiieeeeeees 518
Deleting Nodesets and Sidesets 518
Displaying Nodesets and Sidesets 518

XXi

Cubit 12.1 User Documentation

Nodeset Associativity Data 518
Equation-Controlled Distribution Factors 519
Nodeset and Sideset Specification, 521
Creating Nodesets and Sidesets 521
Assigning Names and Descriptions to Nodesets and Sidesets 522
Grouping Faces on a Surface into a Sideset 522
Grouping elements in VOIdS and €NCIOSUIES.uuueeeiiiieeiiiie e ittt ettt ettt e st e e e e e e e siieeeeaneee 523
Deleting Nodesets and Sidesets 523
Displaying Nodesets and Sidesets 523
Nodeset Associativity Data 523
Equation-Controlled Distribution Factors 524
Exodus Il File Specification 526
Exodus 1l Manual 526
Element Block Definition Examples 526

Multiple Element Blocks

526

SUIMACE MESN ONIY .ttt ettt ettt ettt et ettt et e e et e et e e s eeate e e st e eat e e et e e aaeenee 526
TWO-diMENSIONAI MESN....eiiiiiiiiiiiiiiii ettt ettt ettt s 526
Exodus Il Model Title 527
Exodus Coordinate Frames 528
Defining Materials 529
Boundary Condition Sets 530
*** ABAQUS Parameters *** 530
*** NASTRAN Parameters *** 530
Using Restraints 531
Displacements/Accelerations/Velocities 531
FIXEO OF FrOO. ittt ettt ettt ettt e ettt et ettt e e st e e et e e s i eeeeeaa 532
Displacement COMBDINATIONS.ueeiiuieiiiiiieie ettt ettt ettt ettt et ettt eeieeeeeens 532
Temperature 532
Top, Gradient, Middl€, BOtOMeeiiiuiiiiiiiiei ettt ettt ettt ettt ettt e 533
Using Loads 534
Forces 534
Using Pressure 534

NV AIUB . oottt ettt et ettt ettt ettt et et e e e e e e 534
Pressure and TOtal FOICE. . .uuuiiuuiiiiiiii ettt ettt ettt ettt ettt 535

TOP AN BOOM ettt ettt ettt e e ettt et ettt s ettt ee e et et ta et e ea et e e sa e e e e ai e e e eatees 535
Using Heat Flux 535
TOp and BOtOM VAIUES. ...ttt ettt e e ettt e e ettt e e ittt e e et eesir e e e 535
Using Convection 535
SUIMOUNAING . ettt ettt ettt ettt ettt ettt ettt ettt ettt ettt ettt ettt e e e ee e e 535
Coefficient 535
Using Contact Surfaces 536
The Contact Region 536
The Contact Pair 536
Auto-Contact Tool 536

xxii

Table of Contents

Using Contact Surfaces 537
The Contact Region 537
The Contact Pair 537
Auto-Contact Tool 537

Using CFD Boundary Conditions, 538
Inlet Velocity 538
Inlet Pressure 538
Inlet Massflow 538
Outlet Pressure 538
Farfield Pressure 538
Symmetry 538

Miscellaneous Boundary Condition Commands 539
Delete 539
List 539
Draw 539
Highlight 539

Exporting Presto Files 540

Defining PARAMS for NASTRAN 541

Finite Element Model 542

Exporting an Exodus Il File 543
Controlling Element and Node ID Maps 543
Exporting a Parallel Mesh for pCAMAL 543
Converting an Exodus ll file to ASCII 543
Controlling Exodus Il Output Precision 544
Large Exodus Format 544

Instancing Parts with ABAQUS 545

Exporting Fluent Grid Files 546

Transforming Mesh Coordinates 547

How to Use the ITEM Wizard 548
The ITEM Workflow 548
Using an ITEM Panel 549

Task panels that link to other ITEM PaANEIS.ueeuiiieiiieiiiiiei ettt eeiee e eesieeeeeeeieeeesines 549
Task Panels that Link t0 CONtrol PANEIS.uuueiieeiiiiiiieeieee sttt e s e s eeaes 550
SEt-UDP PANEIS. .ttt s et et et i e e e e e s aeeeea 550
Diagnostic Panels 551
Undo Button 553
Magic Mesh Button 553
Getting Help 553

xxiii

Cubit 12.1 User Documentation

Defining the Geometric Model 554
Setting up the Finite Element Model 556
Bad geometry representation 557
Detecting Invalid Geometry 557
Resolving Invalid Geometry 557
Small details in the model 558
Small Curves 558
Small and Narrow Surfaces 559
Contact Surfaces 562
Resolving Problems with Conformal Assemblies 563
Resolving Misaligned Volumes 563
Correcting Merge Problems 563
Determining an Appropriate Merge Tolerance 566
Opening the Merge Tolerance Panel 566
Estimating Merge Tolerance with Small Feature Size 567
Fine Tuning the Merge Tolerance 568
Setting the Merge Tolerance 568
Determining the Small Feature Size 569
Why doesn't the list include small gaps between volumes? 569
Blend Surfaces 571
Geometry Decomposition 572
Recognizing Nearly Sweepable Regions 574
Forced Sweepability 576
Generating a Mesh in ITEM 577
ITEM Meshing Suggestions 577
Validating the Mesh in ITEM 581
Automatic Detail Suppression 582
Example 582
Automatic Geometry Decomposition 584
Cohesive Elements 585
Multiple Curves in FLATQUAD Blocks 585

XXiv

Table of Contents

Deleting Mesh Elements 588
FeatureSize 589
Geometry Tolerant Meshing, 590
Initial Mesh Size 590
Fixing a Geometric Entity 590
Tolerance Fraction 591
Creating the tolerant mesh 591
Fem/New/Old Options 591
Free Mesh vs. Mesh-Based Geometry 592
Quadrilateral Surface Mesh 592
Examples 593
Limitations 595
Accumulated gEOMELIIC EITO . . uueeiiiteie ittt ettt ettt ettt ettt e ettt e ettt e e iea e 595
Loss of Resolution due to initial faCetiNg.....c.ueeeeeiiiiieeiiiiii ittt 595
Surface t0 SUMaCe PrOXIMILY ... i ettt ettt ettt e e sttt et eeseeeeesieeeeeiaeeees 596
Mesh size 0N fiXed gEOMELIY ENEITIES. . ueeuureiieiieiie ittt ettt ettt sttt e e ie ettt e ieeeiteeaeeaneene e e 597
Mesh Cutting 598
COOrdINALE PlANE. ...t se e s e s s 598
PlaNar SUMACE. . eiii ittt ettt et n e 598
Plane frOM 3 POINTS. ...ttt ettt ettt ettt ettt et e e et e et et et e ettt et e ea e ettt et e st e aaeeeaes 598
EXtENAEA SUMACE. ..eiiiiiiiiiiiiiiiiiiee ettt ettt ee e 599
Meshcut Options 599
Meshcutting Scope 599
Meshcutting Example 599
Mesh Grafting 605
Grafting Options 605
Grafting Scope 605
Optimize Jacobian 609
Randomize 610
Refine Mesh Boundary 611
Sculpting 612
Super Sizing Function 614
Test Sizing Function 615
Transition 617
Triangle Mesh Coarsening 620
Whisker Weave 622
Whisker Weaving Basic Commands 623
Whisker Weaving Options 624

XXV

Cubit 12.1 User Documentation

Available Colors 625
Element Numbering 629
Node Numbering 629
Side Numbering 629
Triangular Shell Element Numbering 630
NOAE OFUEIING. ettt ettt ettt ettt ettt ettt et ettt et ettt et e et e e e a e e e e 630

Side Set SidE OFUEINNG. ueeeeei ittt ettt e ettt e sttt et e et et e e e s eeaaeeeen 630
FullHex vs. NodeHex Representation 632
APREPRO Syntax 633
APREPRO Rules 634
1. Functions 634

2. Variables 634

3. Numbers 634

4. Strings 634

5. Operators 634

6. Delimiters 634

7. Expressions 634

8. Algebraic Expressions 635

9. String Expressions 635
10. Relational Expressions 635
11. Conditional Expressions 635
APREPRO Operators 636
1. Arithmetic Operators 636

2. Assignment Operators 637

3. Relational Operators 637

4. Boolean Operators 638

5. String Operators 638
APREPRO Predefined Variables 639
APREPRO Units 641
APREPRO Functions 646
1. Mathematical Functions 646

2. CUBIT Functions 648
3.String Functions 652
APREPRO Additional Functionality 655
1. File Inclusion 655

2. Conditionals 655

3. Loops 656
APREPRO Journaling 657
APREPRO Comments 657
Significant Figures 657
Python Functions 658
Functions 658
Member Function Documentation 669

XXVi

Table of Contents

EDUE(BIIGIV) ettt ettt ettt e ettt ettt e et e et ettt ekt e et e et e et e et et e st e et e nteateens 669
Bool developer_commands_are_enabled().........c..ooooieiiiiiiiiiiiiiiiiiiiiii i 669
Str get VerSION()ueeeuiieuiiiiiiiiiiiiii i

Str get_reViSion_dat (). e e e

str get_build_number()...

S Bt ACIS_ VEISION()ittt ettt ettt ettt et e et e ettt e e e ettt et st e e ettt et e e st e anteeaeeeaee

Str gt eXOAUS_VEISION(). . eiieriiriiiiitiitiiiiii it 670
Str get_graphiCS_VEIrSION(). e e eiee e ettt et e e 670
PrNt_ CMA_ OPHONS().reiiitiiiitiiiitie ettt ettt ettt ettt ettt ettt ettt e ettt et et e et e e e e s e e e e e e eiraeeannes 670
Bool iS_MOAified().uecuiiiiiiiiiiiiiiiiiiiiii i 670
set_modified(modified).......cccoooiiiiiiiiiiiiiiiniiiiiiii i 670
Boolis_uNdO_Save NEEAEA()...ccuiieiiriiiiiiiiiiiiiiiiee e 670
set_undo_saved().................

Bool is_command_echoed()

Bool is_volume_meshable(VOIUMeE d).........oeeuiieiiriiniiiiiiiiiiiiiiiii e, 671
JOUrNAl_COMMANAS(STALE). c.eviiuiieieiieiiti ittt ettt ettt e et e e et et ee i e e e e 671
Bool is_command_JOUMNAIEA(). .. ueeeeeiiiiiiie ettt ettt 671
str get_current_journal_file() .
CMANPUL SEING). it
silent_ cMA(INPUL STHNQ).cccciieiiiiiiiiiiiiiiiei e
[Lint] parse_cubit_list(type, int_list, include_sheet DOdIES).......cccueeieeiiiniiiiiiiiiiiiiiiiiiiiiiee 672
print_raw_help(input_line, order_dependent, consecutive_dependent)...........o.ccceueieiiiiiiiiiiiiiiiiiiieee 672
INE QBT EITOT COUNMT().curiieriieiiieriiiiieeiii ittt 672
[str] get_mesh_error_SOIUtIONS(EITOr_ COUB). ..ttt ettt e et e e e e e e e e e 672
float get VIEW QISTANCE(). ueeeiieiiiieiiei ettt ettt ettt e ettt e e et e s 673
[float] get_view_at()...... ..673
[float] get_View frOmM()..cccoeieiieiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 673
TESET CAMEIA() ettt 673
unselect_entity(entity type, €Nty Id)......oeieeiiiiieiiiiiiiiiiii i 673
BOO iS_PEISPECHVE _ ON().etiiriiiriiiiiitieee ittt ettt ettt ettt e e e et et et ettt e et e e e e e e e e a e e iee i 673
Bool is_scale_ViSiDility ON()...coceeiiiieiiiiiiiiiiiiiiiiieiieii i 674
int get_rendering_MOAE (). .uuuuie ettt ettt ettt ettt e e e e 674
set_rendering_MOAE(MOAE). . c.uiiiiiiiii ittt ettt e ettt e et e e e a e 674
Clear PreVIEW()..ooouueiieuiiiiiiiiiiiii it 674
strget PICK_tyPe()eiiceiiieiiiiiiiiiiiiiiiiiiii i 674
float get_mesh_edge_length(€dge id).........ocueeiiiiiiiiiiiiiiiiiiiiiiiiiiiei 674
float get_meshed_volume_or_area(geom_type, entity_idS)........ceueueeeenieiiiiiiiniiiiiiiiiiiiiiiiiiiieeiiieee 675
int get_mesh_intervals(geom_type, ENtity 1d)......ceeeuiiieiiiiiiiiiiiiiiiii et 675
float get_mesh_size(geom_type, entity_id)... .
float get_auto_size(Volume _id_liSt, SIZE)......ceeieiiiiiiieeie e

get_quality_stats(entity type, id_list, metric_name, single_threshold, use_low_threshold, low_threshold,
high_threshold, min_value, max_value, mean_value, std_value, mesh_list, element_type, bad_group_id,

MNAKE OFOUD). ettt ettt ettt 676
float get_quality_value(mesh_type, mesh_id. metric_name)...............oooooeeviiiiiiiiiiiiiiiiiiiiiiiiii 676
str get_mesh_scheme(geom_type, entity id)........coooooveeiiiiiiiiiiiiniiiiiiiiiiiiiiiiii i 677
str get_mesh_scheme_firmness(geom_type, entity id)........c.cceeeeeiiiniiiiniiiiiniiiiiiiiiiiiieiiiee 677
str get_mesh_interval_firmness(geom_type, entity_id)..........cocoeeeiiiiiiiiiiiiiiiiiiii 677
Bool is_meshed(geom_type, entity_id) "
Bool is_merged(geom_type, €Nty Id).......ceeeeiieineiiiniiiiiniiiiii i

str get_smooth_scheme(geom_type, entity_id).........oooveriieiiiiiiiiiiiiiiiiiiiiiiiii i 678
INt GOt NE@X_COUNT(). ettt 679
int get_pyramid_COUNE()..uiiouiieiiiiiiiiiiiiiiiiiii i 679
int get_tet count().......

int get_quad_count()

Nt get_tri_ COUNE().uiieiieiiiieniiiiiiiiii it

int get_edge_count()
int get_node_count()
int get_volume_element COUNt(VOIUME 1d).....eiiuuiiiiiiiiiiie ettt et 680

xxvii

Cubit 12.1 User Documentation

Bool volume_contains_tetS(VOIUME). ..cuiuiiieiiiies ittt e et 680
int get_surface_element_count(surface_id)...........c..oooooeiioiiiiiiiiiiniiiiiiiiiiii i 680
Lint] get_hex_sheet(node_id_1, node_id_2)...........ccccoovieiiiiiiiiiiiiiiniiiiiiiiiiiiiiiiiiiiiiiiiii 680
Bool is_visible(geom_type, €Ntity id)........cooeeiiriieriiiiiiiiiiiiiiiiiii 681
Bool is_virtual(geom_type, entity_id)......... ...681
Bool contains_virtual(geom_type, ENtity 10)......c.ceeeiieeiieiiiiiiiiei ettt 681
[int] get_source_surfacesS(VOIUME id)........cueuuiiriiniiriieiieiiiiiiiii i 681
[int] get_target_surfaces(VOIUME _id).......uueieiieiiee ettt s e 681
int get_common_curve_id(surface_1_id, SUface 2 id)........cccuueiiiiiiiiiiiiiiiiiiiiieiieeseeeeeee e 682
int get_common_vertex_id(curve_1_id, curve_2_id)..........c.oooeieiiiiiiiiiiiiiiiii 682
str get_merge_setting(geom_type, entity id).........ccoooieiiiiiiiniiiiiiiiiiiiiiiiii 682
Str get_Ccurve type(CUNVE 1d)......ccueuiieiieiiiiiiiiiiiiiii i 682
str get_surface_type(surface_id)......... ... 683
get_surface_normal(Surface_id, X, Y, Z)...eeuueeeeieieie ettt e i s e aee e 683
[float] get_surface_nNormal(SUrface _id).........ococeeeieiiiiiiiiiiiiiiiiiiiiiiiiiiie e 683
get_surface_centroid(SUface id, X, V. Z)..euiueiii i 683
[float] get_surface_centroid(SUrface id)........uuiiieiiiiiieiesee e 684
str get_surface_sense(surface_id).............ocoooooveeiinnn ...684
[str] get_entity_modeler_engine(geom_type, entity id)........oooooeiieiiiiiiiiiiiiiiiiiiiii 684
[float] get_bounding_box(geom_type, entity id).......ccccceeeeieiniiiiereiiiiiiiiiiiiiiiiii 684
[float] get_total_bounding_box(geom_type, entity liSt).........covueeeniiiniiiiniiiiiiiiiiiiiiei 685
float get_total_volume(VOIUME _lIS).....ceuueeiieiiee ittt e et e s e 685
str get_entity name(geom_type, €Ntity id)......ccoeueeiiieiiiiiiiiiiii i 685
int get_entity color_index(entity type, entity 1d)........ueeueeiiiiiiii i 686
Bool is_multi_VOIUME(DOAY 10)...eiiiiiiiiiiiie ittt

Bool is_sheet_body(volume_id)....
Bool is_interval count_odd(surface_id)
Bool is_periodic(geom_type, ENtity Q).ouuueriieriieiiiiiiiiii i
Bool is_surface_planer(Surface id)..........ccoeeeeeiieniiiiniiiiiiiiiiiiiiiiiiiiiiieie e,

Bool get_undo_enabled(). ...

int NUMbEr_UNAO_ COMMEANAS().cueeieiteeiee ettt e et st e st e e st e et e e et e et e e e e e
[Str] QL APIEPIO VAIS(). ittt ettt ettt e et ettt et et e et ea ettt eat e e e et
Bool get_aprepro_value(var_name, var_type. dval, SVal)...........coooooieiiiiiiiniiiiiiiiniiiiiiiiiiii 688
Bool get_node_conStraint(). .. eieeeieuiieuiieiiiiiiiiii i 688
str get_vertex_type(surface id, VerteX id)........c.cceueiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 688
[int] get_relatives(source_geom_type, source_id, target geom_type).......ccceeeeveiieeiieniiiieiiiiiiieiiieeiieeeieeee 688
[int] get_adjacent_surfaces(geom_type, ENtity id).......cocoueeiiieeiiiiiiiiiiiiiiiiiie i

[int] get_adjacent_volumes(geom_type, entity id)...
[int] get_entities(geom_type, include_sheet_bodies)
[int] get_list_of free_ref entitieS(QEOM _tYPE)...uuuuuiiieiiie ittt
int get_owning_body(geom_type, entity id)...........ccocooviiiiiiiiiiiiiiiiiiiiiii
int get_owning_volume(geom_type, entity_id)..........c.oooeieiiiiiiiiiiiiiiiiiii i
int get_owning_volume_by name(entity NAmMe)..........c.cuouiieriiniiiiiniiiiiiiiiiiiiiiii
float get_curve_length(CUrVe id)..........c.couueieueiiiniiiiiiiiiiiiieiiiiiiiee i
float get_arc_1ength(CUNVE_id)......ueuiiiiiiiiiiieiieieeti et

float get_distance_from_curve_start(x, y, z, curve_id).
float get_curve radiUS(CUINVE_Id). .. .couiiiiiiiiiieie ettt
[float] get_curve_ CeNtEr(CUNVE Id). .. ueiieeiiieiiee ettt ettt i e es e e i e s e i e aeieneees
float get_surface_area(surface_id)............c.ooooeeiiiiiiiiiiiniiiiiiiiiiiiniiiii i
float get_volume_area(volume_id)...........ooooeouiiiiieiiiiiiiiiiiiiiiiiii oo
float get_hydraulic_radius_surface_area(surface_id)... .
float get_hydraulic_radius_volume_area(volume_id)........c..coueieviiiiniiiniiiiiiiiiiiiiiiiieiiiiiceeieie

[float] get_center_point(entity type, entity id)........ccueeeeieieiiieiiie it

iNt get_ ValenNCe(VErtOX i) ...cuuuuriiiiiiiiiiiiiii i

float get_distance_between(vertex_id_1, VEMEX Q0 2).....ccioiiiiiiiiiiiiiiiiiiiiiiiiie ettt 693
print_surface_SUMMAIY StAS()....ueueueiriiieiiiii ettt ettt ee et e 694

xxviii

Table of Contents

print_volume_summary_stats()..........
get_bc_info(sourceBC., bcType. belD)
get_entity_info(source_entity, geom_type, entity id)..........cooooooiiiiiiiiiiiiiiiiiiiiii 694
int get_volume_count()
int get_surface_count()..
int get_vertex_count()
Nt g€t CUNVE COUNE().eiiriieiiiiiiiiiiiiiii ettt
int get_curve_count(target_volume_ids)
Bool is_granite_engine_available()
Bool is_catia enqine AVAIADIE()..eeiieeiiieiiiiie et s e

[int] get_small_surfaces(target volume_ids, mesh_size)...

[int] get_narrow_surfaces(target_volume_ids, mesh_size)
et_small_and_narrow_surfaces(target_ids, small_area, small_curve_size

[int]qet commdent vertices(target volume |ds, high_tolerancCe)........o.uveeeiiiiiiiiiiiiiiiiieiiiiieeeeeiee e 699
[[str]] get solutions_for_near_coincident_vertices(vertex_idl, VerteX_id2)........cococeeeeiiiiieiiiiiiiiiiiiiiiiiceene. 699
et_solutions_for_imprint_ merge(surface_id1, surface_id2

[[str]]get_solutions_for_forced_sweepability(volume_id, source_surface_id_list, target_surface_id_list,

SMAI_CUNE _SIZE)..eiueiiiiiitiiiii ettt ettt ettt ettt ettt ettt et e et e e et e et ie e 700
et_solutions_for_small_surfaces(surface_id, small_curve_size, mesh_size
[[str]] get_solutions_for_small_curves(curve_id, small_curve_size, mesh_size)................... .
et_solutions_for_surfaces_with_narrow_regions(surface_id, small_curve_size, mesh_size).....................

Bool get_solutions_for_source_target(volume_id, feasible_source_surface_id_list, feasible_target surface_id_list,
infeasible_source_surface_id_list, infeasible_target_surface_id_list)

get_sharp_surface_angles(target_volume_ids, large_surface_angles, small_surface_angles, large_angles,
small_angles. upper_bound, lower_bound)...........cooooviiiiiiiiiiniiiiiiiiiiiiiii i 701

get_sharp_curve_angles(target_volume_ids, large_curve_angles, small_curve_angles, large_angles, small_angles,
upper_bound, I0WEr_DOUNG).....ueieiiiie ittt e st s a e

get_bad_geometry(target_volume_ids, body_list, volume_list, surface_list, curve_list)

float estimate_merge_tolerance(target_volume_ids, accurate_in, report_in, lo_val_in, hi_val_in, num_calculations_in,

return_calculations_in, merge_tolS, NUM_ProXimMiti€S).........ecuierieriiiieniniiiiiieiiiiiiiieiiieee 704
find_floating_volumes(target_volume_ids, floating_list)..............oooooeieiiiiiiiiiiiiiiiiiiiiiiiiii

find_nonmanifold_curves(target_volume_ids, curve_list).....
find_nonmanifold_vertices(target_volume_ids, vertex_list)

get_coincident_entity pairs(target_volume_ids, v_v_vertex_list, v_c_vertex_list, v_c_curve_list, v_s_vertex_list,
v_s_surf list, vertex_distance_list, curve_distance_list, surf distance_list, low_value, hi_value, do_vertex_vertex,

do_vertex_curve, do_vertex_surf, filter_same_vOIUME CASES)......ccouiiiuiiiiiiiiiiiiiiiiiieiiee st 705
get_coincident vertex_vertex_pairs(target_volume_ids, vertex_pair_list, distance_list, low_value, threshold_value,
filter_Same_VOIUME _CASES).......ccouiiiuriiiiiiiiiiiiieiiieieieee e 706
get_coincident_vertex_curve_pairs(target_volume_ids, vertex_list, curve_list, distance_list, low_value,
threshold_value, filter_same_VOIUME _CASES).......ccciiuueiiiiiiiiiiiiiiiei ettt ettt ettt e e 706
get_coincident_vertex_surface_pairs(target_volume_ids, vertex_list, surface_list, distance_list, low_value,
threshold_value, filter_same_vOlUME CaSES).......c.cceuiiriieiieiiiiiiiiiiiiiiiiiiiiei e, 706

et_solutions_for_decomposition(volume_list, exterior_angle, do_imprint_merge, tol_imprint

XXiX

Cubit 12.1 User Documentation

XXX

[[str]] get_solutions_for_blendS(SUMface_id).........c.cuiueriiiiiiiiiiiiiiiiieiiieiiiiiie e 707
[[int]]get_blend_chains(surface_id)..........c..ccoooeeuiiiiiiiiiiiiioiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 707
float get_merge_toleranCe (). c..uceuieeiiiiiiiiiiiiiiiiiiiiii il 707
str get_exodus_entity name(entity type, entity id)........ocoueeeieiiiiiiiiiiiiiiiii 708
str get_exodus_entity_description(entity _type, entity_id).... ... 708
[float] get_all_exodus_timeS(filleNamME).......uueiueeiiiiieeie ettt 708
int get_block_id(entity_type, €Ntity id)......ccoooiieiieiiiiiiieiiiii i 708
[int] get_block_ids(mesh_geom_file_Nam@)........ccueeieiiiiiiieiiee e 709
[int] get_DIOCK i TISt().eeuueureriieriieieeiieieiiee ittt e 709
Lint] get_nodeset_id_liSt()...co.oooieiiiiiiiiiiiiiiiiiiiiiiiiiiii i 709
Lint] get_sideset id_liSt()ec.cooieieioiiiiiiiiiiiiiiiiiiiiiiiieiiice i 709
Lint] get_bc_id liSt(DC tYPE iN).iceeiiiiiiiiiiiiiiiiiiiii e 709
int get_next_sideset_id().........

int get_next_nodeset_id()

iNt get_NeXt DIOCK I0().iueeieriieiieriieiiiiiiiiii e

get_block_children(block_id, group_list, node_list, edge_list, tri_list, face_list, pyramid_list, tet_list, hex_list,
volume_list, surface_list, curve_list, vertex_list)

et_nodeset_children(nodeset_id, node_list, volume_list, surface_list, curve_list, vertex_list
get_sideset_children(sideset_id, face_list, surface_list, curve liSt)............ooceeeeieviinineneeee.
[int] get_block_groups(block_id)..... .
Lint] get_block volUMES(DIOCK 1d).....ccuiieiieiiiiiiiiitiieiiieeeeeeeie et
[int] get_block SUrfaceS(BIOCK 10).....ccuiiiiiiie it
[int] get_bIOCK CUNVES(DIOCK 1), ...ttt ettt e e et e e e s e e s e s
Lint] get_block_vertices(BlOCK_id)........cooovieviiriiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicii i
Lint] get_block_nodes(bloCk_id)........ccoooeeieiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Lint] get_block edges(blOCK id).....cccocuiueueeiiiiiiiiiiiiiiiiiiiie e
[int] get_block triS(DIOCK d)...cccueeneneieiineieiiieieiiiiiiieiiieei st
Lint] get_block faceS(DIOCK 10).......ueuiiiiiiiiiiieiieiieiiieiiieeeeeee ettt
Lint] get_block_pyramidS(DIOCK id)......coveeuieiieiiiiiiiiiiiiei it
[int] get_bIOCK tetS(BIOCK id).....cceieiieiiiiie et
[int] get_block NeXeS(DIOCK 1), ..c.uuiiiiiee ettt st e e ae e e e e s e e e
[int] get_nodeset_volumes(nodeset_id)
[int] get_nodeset_surfaces(nodeset_id)... .
[int] get_nodeset curveS(NOAESEt id).......cceeriieiiiiiiiiiiiiiieiieiii i
[int] get_nodeset verticesS(NOAESEt Id).........cuuiiiiiiiiiiiiiiiiiiiiiiiiieiee i
[int] get_nodeset NOAeS(NOAESEE I0).....uuiieuiiiiiiiie ettt ettt et et i et eae e s
[int] get_sideset cUrveS(SIAESET i) ..uuuuuieieiieiiie ettt a e e e
[int] get_sideset SUrfaces(SIdESEE I0).....uuiuiiiiiii it
[int] get_sideset qUAdS(SIAESEL 10).....uuiiueiiiiiie et s e s
[int] get_surface_quads(surface_id)...........c..cooieeuiieiiiniiiiiiiiiiiniiiiiiiiiiiiiiii i
str get_entity_sense(source_type, source_id, sideset_id).. .
str get_wrt_entity(source_type, source_id, SIdeSet_id).......ccooeeviiiiiiiiiiiiiiiiiiiiiiiiiiii e
Bool is_using_ShellS(SIdeSet_id)........cuouiieiiriiiiiiiiiiiiiiiiiii i
[str] get_geometric_owner(mesh_entity _type, mesh_entity liSt)......c..ceoeeiieiiiiiiiiiiiiiiiiiiiiieiiiieiiiiiiiiiee
Lint] get_volume_NOAES(VOl i) . .cieiiiieiiiiieiieiiiiieeeie ettt
Lint] get_surface nodes(surf_id).. .
[int] get_curve NOAES(CUINV_I).. ..ttt sttt s e st e et e e st e et e e e e s e
int get_vertex_node(Vert_id)...........ccooeiieiiiiiiiiiiiiiiiiiiiiiiiii
int get_id_from_name(Name@)..........c..oooiieiiiiiiiiiiiiiiiiiiiii i

get_group_children(group_id, group_list, body_list, volume_list, surface_list, curve_list, vertex_list, node_count,
edge_count, hex_count, quad_count, tet_count, tri_ COUNE)......ueeiuieiiiieiiiiiiiie it 718

Lint] get_group_groups(Qroup_id)...c..c.coeeiiiiiieiiiiiiiiiiiiiiiiioiiiiii i
Lint] get_group_volumes(group_id)....
[int] get_group surfaces(QroUP Q).cueeeeiiiiiiieiiiiiiiiiiiie i
[int] get_group_curves(Qroup_id).........oeeuiiiiiiiiiniiniiiiiiiiiioiiiieei
[int] get_group VerticeS(Qroup_id).........uueeeieeniiiiiiiiiieeie i
[int] get_group NOAeS(QroUD_i)....cc.eueurieeieeeiiiieiiiieiiie ettt
[int] get_group_edges(QroUp_id). ... e

Table of Contents

[int] get_group_qUAadS(QrOUP_). .e.ueeeiiiiiiiiiieiieiiei ittt ettt
Lint] get_group_tris(Qroup_id)......coooveiioiiiiiiiiiiiiiiiiiiiiiiiiiiii
Lint] get_group_tets(Qroup_id)...c.ccceieiiiiiiiiiiiiiiiiiiiiiiiii i
[int] get_group_hexes(group_id)....
int get_next_group_id()
E1ELE Al GrOUPS (). eeeeueiiieiie ettt ettt ettt ettt ettt ettt et e ettt et e et e ettt a e st e et e st e e neeanees
delete_group(group_id)
set_max_group_id(max_group_id)
INE CrEAtE NEW _gIOUD() ettt ettt et et et et et et ettt e et et e et e et et e st eat et e st eateeeie
remove_entity_from_group(group_id. entity_id. entity_type)..
group_list(name_list, id_liSt).........ooeeeiiiiiiiiiiiiiiiiiiiiii i 721
[int] get_mesh_group_parent_ids(element_type, element id)..........ccoooeieeiiiiiiiieiiiniiiiiiiiiiiiiiiiee 722
Bool is_mesh_element_in_group(element_type, element_id).
Bool is_part_of_list(target id, id_liSt).......cueeeiiieiiieiseesee et e e
int get_last id(entity tYPE)....oueuiiiiieiiiiiiiiiiii i
str get_assembly_classification_level()........ ..
str get_assembly_classification_Cate@gory().. ... uuu it
str get_assembly_weapons_category()....oooieeiieiieiiiiiiiiiiiiiiii i
str get_assembly metadata(volume_id, data_type). .
Bool is_assembly _metadata_attached(VOlUme_id)..........o.eeeiiriiiiiniiniiiiniiiiiiiiiiiiie,
str get_assembly _name(assembly id)...........cccueiiniiiiiiiiiiiiiiiiiiiiiiii
str get_assembly description(assembly id).......cuoeeeieiiiiiiiie i
int get_assembly_instance(assembly id).........cccoeiieriieiiniiiiiiiiiiiiii
str get_assembly file_format(assembly id).........cuuiiiiiiiiiii e
str get_assembly unitS(@SSEMBIY 10).....uuiueiiiiiiiiii e s e
str get_assembly_material_description(assembly_id)............oooooiiiiiiiiiiiiiiii
str get_assembly_material_specification(assembly_id).........cocooooeiiviiiiiiiiiiiiiiiiiiiiiiii

int get_exodus_id(entity_type, €Ntity id).......ccoooeieiiiiiiiiiiiiiiiiiiiii
str get_geometry _owner(entity type, entity id).........cooeeeeeiiiniiiiiiiiiiiiiiiiii
[int] get_connectivity(entity type, €Nty id)........coveoeeiiiiiiiiiiitiiiiiiiei et
[int] get_sub_elements(entity_type, entity_id, dIMENSION).....cooueeiiiiiiiiiiiiiiiiiiiiiiiiiiieiee
[float] get_nodal_coordinateS(NOAE_id).......cuieeiiiiiieis et

Bool get_node_position_fiXed(NOAE i),uuiueiiiiieie it s e
str get_sideset_element_type(sideset_id)...........cooooieeiiiiiiiiiiiiiiiiiiiiiii i
str get_block_element_type(bIOCK_id)......c.ooooeiviiiiiiiiiiiiiiiiiiiiiiiiiiiii i
int get_exodus_element_count(entity_id, €ntity TYPe).........ooeeeiieriieiiiiiiiiiiiiiiiiii e
int get_block_attribute COUNt(DIOCK _1d).....vviieeeiiiiiiiiiiiiiiiiiiiieiieiiieie s
float get_block_attribute_value(block id, INAEX).....ceeeuueiiiiiiiiiietiee ettt a e s
[str]get valid_block_element typesS(BIOCK id)........coueuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicieiee
int get_nodeset_node_count(NOAESEt I0)......ueueeiiiiieiii e
int get_geometry _node_count(entity type, €ntity id)........cceeiiueeiiiieiiiiiiii i
get_owning_volume_ids(entity_type, entity_list, VOI_idS).......ccooooeeiiiiiiriiiriiiniiiiiiiiiiiiiiiiiiiiii
str get_mesh_element_type(entity_type. entity id)........coooooeeiiiiiiiiniiiiiiniiniiiiiiiiii
Bool is_on_thin_shell(bc_type_in, entity id)........ccoeeeriieiiiiiniiiiiiiiiiiiiiiii e
Bool temperature_is_on_solid(bc_type_in, entity id)........cooeeeueiieniiiiiniiiiiiiiiiiiiiieiiei
Bool convection_is_on_SOd(ENtitY i0).......eeueeeireiiiiiie ittt
Bool convection_is_on_shell_area(entity_id, shell_area).
float get_convection_coefficient(entity id, CC_tYPe)......ueeiueiiiiiiiiiiiee e
float get_bc_temperature(bc_type, entity id, t€MP_tYPE)...eeuueiiiiiiiiiie e
Bool temperature_is_on_shell_area(bc_type, bc_area, entity_id) .
Bool heatflux_is_on_shell_area(bc_area, entity id)...........ccoooeieiiiiiiiiiriiiniiiiiiiiiiiiiiiiiiiii
float get_heatflux_on_area(bc_area, entity_id)
int get_displacement_coord_system(entity_id)
str get_displacement_combine_type(entity_id)
float get_pressure_value(entity id).........oeeeeiieriieniiiiiniiiiiiiiiii i
str get_pressure_function(entity id)....
float get_force_magnitude(ENtity 10).......coueeisuiiiiiiii i

XXXi

Cubit 12.1 User Documentation

float get_moment_magnitude(entity_id)...... ..731
[float] get_force_direction_vector(entity id)............cooooovieiiiiiiiniiiniiiiiiiniiiiiiii i 732
[float] get_force_moment_vector(entity id)..........c.ooooeieiieiiiniiiiiiiiiniiniiiniiiiiii i 732
float get_material_property(mp, eNntity id)........oceieiiiiieiiiiiiiiiiiiiii 732
[str] get_ material_Name lISH()..o.ueeueuieiiiieiiiiiiiiiiiiiiiieie e 732
Body brick(width, depth, REIGNE).......eeiiiiieiiie ettt 732
Body sphere(radius, x_shift, y_shift, z_shift, inner_radius)..........ccooeeeeiiiieiiiiiiiiiiiiiiii 732
Body prism(height, SiIdesS, Major, MINOI).....cuiiiiiiiiiiiii ittt e ettt eee s e et et eeese i e e 733
Body pyramid(height, sides, Major, MIiNOK, 10P).ueiiiiiiieitieiiiii it ittt ettt it ee i e e 733

Body cylinder(hi, r1, r2, r3)...

[Body] tweak_curve_remove(curves, Keep_Old, PreVIEW).......eeeeieeriiriiiiiiiieiiiiiieiiiiiieieeieieieee 734

[Body] tweak_curve_offset(Curves, diStANCES).......uiiueeiieiiiieiiiiieieieeiee ettt see e 735
MOVE(ENLILY, VECIOT, PIrEVIEW). .. ittt ettt et et ettt ettt e ettt et e et et et ea e e st e aieeeaneeas 735
scale(entity, faCtOr, PrEVIEW).ueeeeieiiee ettt e s 735
reflect(entity, aXiS, PrEVIEW). ... e ettt ettt ettt et ettt e e e e s st e e et e e s e e e e s 735
[int] get_volumes_for_node(node_name, NOdE_INSEANCE)......ccuuiieiiiuiiiiiiiiiiiiiiiiiiiiiiieieeee 735
... 736

int get_mMeSh_error COUNT()....uuuuiiieeiiee ettt ettt ettt ettt ettt ettt ettt ettt ettt e e eeeeeeeens 736
PyObservable 737
Inheritance 737
Class Member Functions 737
Member Function Documentation 737
NOtify 0DSErvers(EVENt TYPE)....couueuiiiiiiiiiiiiiiiiii e 737
PyObserver 738
Example 738
Class Member Functions 738
Member Function Documentation 738
register_observable(0bServable)...........ooueiiiiiiiiiiiiiiii e 739
unregister_observable(0bservable)...........cooooiiiiiiiiiiiiiiiiii e 739
notify _observers(observable, EVENT tYP@).....u it 739
Entity 740
Inheritance 740
Class Member Functions 740
Member Function Documentation 740

[float] boUNAING_ DOX().eeireeiiiiieiiiiiiieiii i 740
[float] CeNter POINT()....eeeeiieeeiee ittt ettt ettt e e e e 740

DL O]ttt ettt ettt et e et ettt et et e et e et et et e et e et et et et e e e eneen 741
COIONVAIUB) . ettt ettt ettt e ettt e e st e e et e e e it e e e e e s e 741

DT COION) ettt ettt e ettt e et eee et ettt et ettt st e e e ettt e e eeeaaaees 741
iS_ViSible(VISIDIlIty flag)..occoiueiieiiriiiiiiiiiiiiieiiiii e 741

INEIS_ VISIDIE().uuriiiiiiiiiiiiiiiiiiiie i 742
is_transparent(transparency flag)......oo.eeeeieeiuiiiiiiiiii i 742

int is_transparent().. . 742
... 742
GeomEntity 743
Inheritance 743
Class Member Functions 743
Member Function Documentation 743

XXXii

Table of Contents

IS NIE ()t e ettt ettt ettt ee sttt e ettt at e e et e st e e at e e e 743
BooliS_mMeShed()..iueuiieiiiieiiiiiiiiiiiii i 744
SOOI sttt ettt ettt ettt ete ettt eete ettt ea ettt et sa e e ee sttt e e eneeeeaaaes 744
TEMOVE MESN().eiiieiiieiiieiiieiiiii e 744
str entity _name()...... .. 744
ENELY NAME(NAMIE). ettt ettt ettt ettt et e e e e ettt et e e n e st ea e et e e ae e et 744
[Str] entity NAMES()..ceeeiiiiiiiiiiiiiiiiie e 745
I UM DAIMIES (). ittt et et et et et et et et et et et et et et e e e 745
rEMOVE_ENLLY NAME(NMAME). . ittt ettt ettt ettt ettt e ettt et e st et ettt e st e e s e s e eaneeas 745
remove_entity NAMES().ccciciiriiiiiiiiioiiiiiiiiiiiiiiiiicee e, 745
INE AIMENSION() .ttt ettt ettt ettt ettt e ettt et ettt ettt e ta ettt ettt reeeaiteeeaaaees
[BOAY] DOGIES ()it
[Volume] volumes()....
[SUMACE] SUIMACES()ittt ettt ettt ettt e et ettt et e e sttt e st e e st e e it e eaeeenee e e e
[CUNVE] CUNVES() ettt ettt ettt ettt et e et ettt e ettt ettt et e et ettt e et e et eeete st e ettt e e eteeeneeeneenneeneeeas
[V EIEX] VOIHICEOS().eureuririeeiietieii ettt ettt e ettt et et ettt
Body. 748
Inheritance 748
Class Member Functions 748
Member Function Documentation 748
[float] get_mass_props()..... ... 748
int point_containment(l0C_iN)....c..ocoooeiieiiiiiiiiiiiii i 748
FlOBE VOIUME ()it et e et e e e et e et e e e et a et e e e s 749
Bool is_sheet_DOAY().cciioiieiieiiiiiiiiiiiiiiiiiiiiiiiii i 749
... 749
Surface 750
Inheritance 750
Class Member Functions 750
Member Function Documentation 750
[[Curve]] Ordered 100PS(). . eeereeeeiieiiieiiieiiiiiiiiiie e 750
[float] normal_at(I0CatioN)..........coeuiieiiiiiiiiiiiiiiiii i 750
[float] closest_point_trimmed(location).. .. 751
int point_containMment(DOINT IN)....o.ceriiriieiiiiiii i 751
principal_CUrVatUreS(POINT).....vveeeeiietee ettt ettt ettt ettt ettt ettt ettt e e 751
[float] POSItioN_frOM_U_V(U, V)..oeouiieieeiiiiiiiiiiitiei ettt e e 752
u_v_from_position(I0CAtiON)......ceoueiuiiiiieiiiiiiiiiii i 752
get_param_range_U(lower_bound, upper_bound).... .. 7152
get_param_range_V(lower_bound, upper_bound) 752
FlOBE AFEA() .ttt ittt ettt ettt ettt ettt e ettt ettt e e et e e st e e st e et et et e e et e ea e eenteees 753
BOOIIS_PIANAI().ccieiiieiiieriieiiiiiiiii i 753
BOOIiS_CYINAICAI). it 753
... 753
Curve
Inheritance

Class Member Functions

Member Function Documentation
[float] taNQENT(DOINT). .eueeeetieieee ettt ettt ettt e ettt ettt ettt et et e et et et e et et et e et e e e et e
[float] CUNVAUI@(DOINE). .. eviieiieieiiieei ittt ettt e et et e e e
[float] cloSest POINE(POINE). .. uiuiesiiiiiieiii ettt ettt ee ettt e et e e ie e
[float] closest_point_trimmed(POiNt)......cc.oeouiieiiiiiiiiiiiiiiiiiiiiiiii i
FlOAt IENQGEN(). kit
[loat] CUINVE CONEEI().. uiieiieiiiiiiiiiiiiiei et
[float] position_from_fraction(fraction_along_curve)

xxxiii

Cubit 12.1 User Documentation

float start_param()...

float end_Param().ec.ceciiieiieiiiiiiiiiii

float u_from_poSitioN(POSItION)....uiiuiiiiiiiiiiiiiiiiiii i 757
[float] position_from_U(U_VAlIUE).......coueeieeiiniiiiiiiiiiiiiiiiiiiiieiee i 757
float u_from_arc_length(root_param, arc_1ength)............ccooeeiieniiiiiniiiiniiiiiiiiiiiiiieiei 757
float fraction_from_arc_length(root_vertex, [eNgth)........cceceueeiiieiiieiiieiiieeseeee et 758
[float] point_from_arc_length(root_param, arc_length)............cceeeeeiiiniieiiiiiiiieiiiiiiiiiiee 758
float length_from_u(parameterl, Parameter2).eu et 758
BOOI IS _POIIOMIC(). ettt ettt et ettt e ettt et e ettt at e e ateeaeeeaee 759

Vertex 760
Inheritance 760
Class Member Functions 760
Member Function Documentation 760

[float] COONAINAES().eeueueeiiiieiiee ittt ettt ettt et ia e 760
... 760

Volume 761
Inheritance 761
Class Member Functions 761
Member Function Documentation 761

FlOAE VOIUMIE() .ottt et ettt ettt i e e e e ee e e 761
[float] PrinCipal_AXES().eecceeeeeiieiiieiieiiieiiiiii i 761
[float] principal_mMOMENtS().uieceuieuiiiiiiiiiiiiiiiiiiiiiii i 762

[float] centroid()..

. 762

ettt ettt e eeeeeeeeeeeieeeieeeieeeieeeeseeeesiesesseesssseesieeesisseeseeesiiseeseeessseeessseessseeessseesseessseesiseeeisseesiseeesieees 762
CubitFailureException 763
Class Member Functions 763
Member Function Documentation 763
SEE WALttt ettt ittt ettt et sttt e e it e s e e e e s ieeeeaan 763
InvalidEntityException 764
Class Member Functions 764
Member Function Documentation 764
S WNIAE) . ettt ettt ettt et ettt et et et et et e et et e iteeireenes 764
InvalidinputException 765
Class Member Functions 765
Member Function Documentation 765
S MVNAE() ettt ettt ettt ettt e ettt e e e sttt a ittt ettt e e at e e et e ea e e et e ent e et e eanee 765
FASTQ 766
Periodic Space Filling Models (Tile) 769
Initial setup 769
Creating Nodesets 769
Smoothing 769
Example 770

XXXiV

Table of Contents

Troubleshooting Guide 771
References 773
Credits 776
Index 778

XXXV

SUIBLY L
DRI

Introduction | Environment | Geometry | Meshing | EE Model | ITEM | Tutorials | Appendix

CUBIT 12.1 User Documentation

@ntroduction - A quick overview of some of the main features and goals of the CUBIT
Mesh Generation T00|kit, licensing and distribution, installation, hardware requirements, aNd where to go

for help.

@& nvironment Control - A description of the CUBIT user environment, including using
the graphical user interface, session control, command line syntax, journal files,
graphics, entity picking, saving and restoring €tC..

@ceometry - A description of CUBIT's geometry features including building
geometry from scratch, manipulating geometry in CUBIT, importing and exporting
geometry formats, etc...

@ nesh Generation - A description of CUBIT's mesh generation capabilities, including
how to mesh geometry, meshing and smoothing schemes, setting sizes and intervals,
importing a mesh, etc...

inite Element Model - How to set up the finite element model for analysis, including
defining boundary conditions, material properties, exporting the finite element model, etc.

lemersive Topology Environment for Meshing (ITEM) - A description of Cubit's interactive
meshing wizard including how to use the wizard, and a guide to geometry clean-up, setting

up the finite element model, mesh generation in ITEM, €tC.

@Step-By-Step Tutorials
@Appendix
@Credits

@Quick Reference

WOfﬁcial CUBIT Web Page

http://cubit.sandia.gov/

Cubit 12.1 User Documentation

mCubit 12.1 User Documentation

Key Features

Geometry Creation, Modification, and Healing

CUBIT usually relies on the ACIS solid modeling kernel for geometry representation; there is also mesh-based geometry,
and a Granite port for Pro Engineer files. Other solid model kernels are planned. Geometry is imported or created within
CUBIT. Geometry is created bottom-up or through primitives. CUBIT can also read STEP, IGES, and FASTQ files and
convert them to the ACIS kernel. SolidWorks, AutoCAD, and some other commercial CAD systems can write SAT files
directly.

Once in CUBIT, an ACIS model is modified through booleans, or tweaking curves and surfaces. Without changing the
geometric definition of the model, the topology of the model may be changed using virtual geometry. For example, virtual
geometry can be used to composite two surfaces together, erasing the curve dividing them.

Sometimes, an ACIS model is poorly defined. This often happens with translated models. The model can be healed inside
CUBIT.

Non-Manifold Topology

Typical assembly meshes require contiguous mesh across multiple parts in an assembly. CUBIT accomplishes this by
taking the two touching surfaces of neighboring volumes, and merging them into a single surface. There will be only one
mesh of the surface, and both volume meshes will share that surface mesh. (In contrast, some meshing packages keep
two surfaces, and take steps to ensure their mesh connectivity and positions match.)

These shared surfaces are called non-manifold topology. Geometric models are usually imported into CUBIT as manifold
(non-shared) models; then, surfaces which pass a geometric and topological comparison are "merged". A similar
technique is used to merge model edges and vertices across parts. These comparisons are performed automatically, and
can optionally be restricted to subsets of the model (to allow representations of such features as slide lines).

Geometry Decomposition

Solid models often require decomposition to make them amenable to hexahedral meshing. CUBIT contains a wide variety
of tools for interactive geometry decomposition, and a capability for performing automatic geometry decomposition is also
under development.

Mesh Generation

CUBIT contains a variety of tools for generating meshes in one, two and three dimensions. While the primary focus of
CUBIT is on generating unstructured quadrilateral and hexahedral meshes, algorithms are also available for structured
mesh generation and triangle/tetrahedral mesh generation. Several algorithms for generating mixed hex-tet meshes are
also being developed.

Boundary Conditions

CUBIT uses different boundary conditions for EXODUS-II format and Non-Exodus formats such as ABAQUS, for
importing and exporting mesh data. EXODUS represents boundary conditions on meshes using Element Blocks,
Nodesets, and Sidesets. Element Blocks are used to group elements by material type. Nodesets are used to group nodes.
Other analysis programs can apply nodal boundary conditions to these sets, such as enforced displacement or nodal
temperature values. Sidesets are used to group sides of elements, such as faces of hexes or edges of quads. Other
analysis programs can apply face-based and edge-based boundary conditions to these sets, for example pressure or heat
flux.

Using Element Blocks, Nodesets and Sidesets, a mesh and boundary conditions can be specified in an analysis-
independent manner. Typically this specification is combined with an additional data file which designates the specific
type of boundary condition (temperature, displacement, pressure, etc.), along with boundary condition values.

Cubit 12.1 User Documentation

Non-Exodus export formats such as Abaqus support more specific boundary condition sets. These sets may include
displacements, temperatures, forces, heatflux, pressure, or contact pairs.

Element Types

CUBIT supports a wide variety of element types, including 1d, 2d, and 3d elements of various orders. Each block has a
unique element type. The element type is specified after the block is created, and after mesh generation (recommended).
Higher order nodes are generated when the element type is specified. Higher order nodes are projected to curved
geometry, depending on the user-settable node constraint flag.

Graphics Display Capabilities

CUBIT uses the VTK package for its graphics and rendering engine. CUBIT can display geometric and mesh entities in
several modes, including hidden line, shaded, transparent or wireframe modes. CUBIT supports screen picking of
geometric and mesh entities, as well as mouse-controlled view transformations like rotate, pan, and zoom. VTK takes
advantage of hardware acceleration on most supported platforms. Image files of any displayed image can also be
generated. CUBIT can also be run without graphics, to allow execution in batch mode or over slow network connections.

Graphical User Interface

A full graphical user interface (GUI) with the standard look and feel consistent with major platforms is available on all
supported Cubit platforms. The GUI version can improve productivity, making new users aware of the wide range of
CUBIT capabilities, and freeing new and experienced users from having to remember esoteric syntax. The GUI and non-
GUI versions create and play back identical journal files, making it easier to switch from one environment to the other.

Command Line Interface

In the command line interface, commands are specified by text rather than mouse clicks. Commands can be entered
interactively or in batch mode by playing back a journal file. The command line interface is available in the GUI through a
window. The non-GUI version supports graphical picking and echoing to the command line, and also mouse-driven view
transformations, but no menus and dialog boxes. The command line and GUI dialog boxes support the APREPRO
preprocessor, which allows parameterization of input. The non-GUI version is available on all platforms, including
Windows.

Hardware Requirements

Cubit is available on the following platforms:

. Linux RedHat 9.0 32- and 64-bit*
. Windows 2000/XP/Vista/7

* Windows 64-bit*

. Mac OS X

The Graphical User Interface version is available on all platforms.

* Please note that IGES and STEP import and export are not available on 64-bit platforms.

mCubit 12.1 User Documentation

Licensing, Distribution and Installation

The CUBIT code is available for use by personnel inside Sandia, any other government laboratory, or to personnel
performing work under contract by a US government entity. In addition, CUBIT can be licensed for non-commercial and
research use. For more information on licensing of CUBIT, see the CUBIT web page
(http://malla.sandia.gov/cubit/index.html) or send email to cubit-dev@sandia.gov.

CUBIT installations have use restrictions. THE CUBIT CODE CANNOT BE COPIED TO ANOTHER COMPUTER AND
THE NUMBER OF USER SEATS ON EACH COMPUTER OR LAN IS LIMITED. If additional user seats or additional
copies of CUBIT are required, you MUST contact us to acquire them.

CUBIT incorporates code modules developed by outside code vendors and licensed to the CUBIT project. Since the
number of licenses for these modules is limited, CUBIT cannot be copied and redistributed without notifying the CUBIT
team.

CUBIT is distributed in statically linked executable form for each supported platform. Supported platforms are listed under
Hardware Requirements. Additional platforms will be added as required.

Instructions for obtaining the CUBIT code will be given after licensing arrangements have been completed.

In addition to the CUBIT executable, the suite of example problems described in this manual is available upon request.

mailto:cubit-dev@sandia.gov
http://malla.sandia.gov/cubit/index.html

a1m1Cubit 12.1 User Documentation

Trademark Notice

HP-UX is a registered trademark of Hewlett-Packard Company.
Sun, SunOS, and Solaris are registered trademarks of Sun Microsystems, Inc.
IRIX is a registered trademark of Silicon Graphics, Inc.

ACIS is a proprietary format developed by Spatial Technologies.

Granite is a proprietary format developed by Parametric Technology Corporation

All other trademarks are the property of their respective owners.

http://www.spatial.com/

mCubit 12.1 User Documentation

How to Use This Manual

This manual provides specific information about the commands and features of CUBIT. It is divided into chapters, which
roughly follow the process in which a finite element model is created, from geometry creation to mesh generation to
boundary condition application. Examples are provided in the tutorial chapter. Appendices contain advanced topics, alpha
commands, summary of APREPRO functions, FASTQ reference, a troubleshooting guide, and references.

Integrated in CUBIT are algorithms and tools, which are in a user-beware state. As they are
further tested (often with the assistance of users) and improved, the tool becomes more
stable and production-worthy. Since documentation of the tool is necessary for actual use,
we have included the documentation of all available tools. However, a "hammer" icon is
placed next to some capabilities as a warning.

Certain portions of this manual contain information that is vital for understanding and
effectively using CUBIT. These portions are highlighted with a "key" icon.

Introduction

. Key Features
. Hardware Requirements

. Licensing, Distribution, and Installation
. Trademark Notice
. How to Use this Manual

. Cubit Mailing Lists
. Problem Reports and Enhancement Requests

Welcome to CUBIT, the Sandia National Laboratory automated mesh generation toolkit. CUBIT is a full-featured software
toolkit for robust generation of two- and three-dimensional finite element meshes (grids) and geometry preparation. Its
main goal is to reduce the time to generate meshes, particularly large hex meshes of complicated, interlocking
assemblies. It is a solid-modeler based preprocessor that meshes volumes and surfaces for finite element analysis. Mesh
generation algorithms include quadrilateral and triangular paving, 2D and 3D mapping, hex sweeping and multi-sweeping
tetrahedral meshing, and various special purpose primitives. CUBIT contains many algorithms for controlling and
automating much of the meshing process, such as automatic scheme selection, interval matching, sweep grouping, and
also includes state-of-the-art smoothing algorithms

The CUBIT environment is designed to provide the user with a powerful toolkit of meshing algorithms that require varying
degrees of input to produce a complete finite element model. Many CUBIT users want to experiment with capabilities as
soon as possible. Hence, CUBIT releases often contain algorithms which are not quite ready for production use. These
features are listed in the Appendix, and are accesible to the user by specifying a developer flag.

The overall goal of the CUBIT project is to reduce the time it takes a person to generate an analysis model. Generating
meshes for complex, solid model-based geometries requires a variety of tools. Many CUBIT tools are completely
automatic, while others require user input. Usually, the automatic choices can be over-ridden by the user if necessary.
Most meshing capabilities are integrated into the common CUBIT framework; there are also stand-alone tools like Verde.
The user is encouraged to become familiar with all of the available tools, so that he can choose the right one for the job.

mCubit 12.1 User Documentation

CUBIT Mailing Lists

The CUBIT team maintains a couple of mailing lists to help our users.

1) The cubit-announce mailing list is a very low-volume mailing list intended to provide news of new releases and other
items of major importance. To subscribe to this list, send a message to: majordomo@sandia.gov
with the body of the message being:

subscribe cubit-announce
2) The cubit users mailing list is a medium-volume mailing list intended for our users to communicate with each other and

ask help of the user community. It also contains the same announcements as the cubit-announce mailing list. To send
questions or comments to this list, send email to:

cubit@sandia.gov

Users can subscribe to the cubit mailing list by emailing majordomo@scico.sandia.gov with a message body consisting of
the single line:

subscribe cubit

An additional mailing list, cubit-help@sandia.gov, has been created for direct communication with the CUBIT developers.
These messages won't reach other users. This list should be used for topics that are not of general interest to others,
including some bugs.

Note: The recommended use of an electronic mailing list to report bugs and request
enhancements is not intended to discourage face-to-face discussion with CUBIT
developers, but rather to minimize response time. Users are encouraged to discuss bugs,
enhancements or general meshing issues with the CUBIT production meshing and
development teams.

10

mailto:cubit-help@sandia.gov
mailto:majordomo@scico.sandia.gov
mailto:cubit@sandia.gov
mailto:majordomo@sandia.gov

mCubit 12.1 User Documentation

Problem Reports and Enhancement Requests

CUBIT bugs, problem reports and enhancement requests should be sent to cubit@sandia.gov or cubit-dev@sandia.gov.
The CUBIT production meshing team or development team will review the email quickly. Users should expect some type
of response within two days. Bugs are usually entered by a developer into CUBIT's bug tracking system.

1"

mailto:cubit-dev@sandia.gov
mailto:cubit@sandia.gov

mCubit 12.1 User Documentation

Starting and Exiting a CUBIT Session

The following commands are used to control CUBIT execution.

Starting the Session

The command line version of CUBIT can be started on UNIX machines by typing "cubit" at the command prompt from
within the CUBIT directory. If you have not yet installed CUBIT, instructions for doing so can be found in Licensing
Distribution and Installation. A CUBIT console window will appear which tells the user which CUBIT version is being run
and the most recent revision date. A graphics window will also appear unless you are running with the -nographics
option. For a complete list of startup options see the Execution Command Syntax section of this document. CUBIT can
also be run with initialization files or in batch mode.

Windows File Association

Windows users have the option to associate .cub, .sat, and .jou files with CUBIT. This means that double-clicking on one
of these files will open it automatically in CUBIT. This option is available during the installation process

Exiting the Session
The CUBIT session can be discontinued with either of the following commands
Exit

Quit

Resetting the Session

A reset of CUBIT will clear the CUBIT database of the current geometry and mesh model, allowing the user to begin a
new session without exiting CUBIT. This is accomplished with the command

Reset [Genesis | Blocks | Nodesets | Sidesets]

A subset of portions of the CUBIT database to be reset can be designated using the qualifiers listed. Advanced options
controlled with the Set command are not reset.

You can also reset the number of errors in the current Cubit session, using the command
Reset Errors <value>

which will set the error count to the specified value, or zero if the value is left blank.

Abort Handling

In the event of a crash, Cubit will attempt to save the current mesh as "crashbackup.cub” in the current working directory
just before it exits.

To disable saving of the crashbackup.cub file set an environment variable CUBIT_NO_CRASHSAVE equal to true. Or,
use the following command:

Set Crash Save [On|Off]

This command will turn on or off crashbackup.cub creation during a crash on a per-instance basis. To minimize the effects
of unexpected aborts, use Cubit's automatic journaling feature, and remember to save your model often.

12

Starting and Exiting a CUBIT Session

13

mCubit 12.1 User Documentation

Execution Command Syntax

Execution command syntax options for the command line version of CUBIT are:

cubit

-help (Print this summary)
-Include <$val> (Specify a journal file)

-input $val (Playback commands in file $val)
-solidmodel <$val> (Read .sat or .cub from file $val)

-fastq <$val> (Read FASTQ file $val)

-initfile <$val> (Read $val as initialization file instead

of $HOME/.cubit)

-batch (Batch Mode - No Interactive Command Input)
-nographics (Do not display graphics windows)

-noinitfile (Do not read .cubit file)

-noecho (Do not echo commands to console)

-nojournal (Do not write journal file)

-nodeletions (Do not allow file deletions)

-journalfile <$val> (Name of journal file, will be overwritten)
-restore [$val] (Name of restore file (default = cubit_geom.save.sat))
-maxjournal [$val] (Maximum number of journal files to write)
-warning [$val] (Warning Messages On/Off)

-information [$val] (Informational Messages On/Off)

-debug <$val> (Set specified flags on, e.g. 1,3,7-9

enables 1,3,7,8,9))

-display <$val> (Specify display to be used for

graphics window)

-driver <$val> (Specify the type of driver to be used for

graphics display)

-nooverwritecheck (Do not perform file export overwrite check)
-variable=<value> (Assign an aprepro variable a value)

Each of these are optional. If specified, the quantities in square brackets, [$val], are optional and the quantities in angle

brackets, <$val>, are required.

Options are summarized in more detail below:

-help

-initfile <$val>

-noinitfile

-solidmodel <$val>

-batch

-nographics

Print a short usage summary of the command syntax to the
terminal and exit.

Use the file specified by <$val> as the initialization file instead
of the default set of initialization files. See Initialization Files

Do not read any initialization file. This overrides the default
behavior described in Initialization Files

Read the ACIS solid model geometry or .cub file information
from the file specified by <$val> prior to prompting for
interactive input.

Specify that there will be no interactive input in this execution
of CUBIT. CUBIT will terminate after reading the initialization
file, the geometry file, and the input_file_list.

Run CUBIT without graphics. This is generally used with the

14

Execution Command Syntax

-display

-driver <type>

-nojournal

-journalfile <file>

-maxjournal <$val>

-nodeletions

-nooverwritecheck

-restore

-noecho

-debug=<$val>

-information={on|off}

-warning={on|off}

-Include=<path>

-fastq=<file>

<input_file_list>

-batch option or when running CUBIT over a line terminal.

Sets the location where the CUBIT graphics system will be
displayed, analogous to the -display environment variable for
the X Windows system. Unix only.

Sets the <type> of graphics display driver to be used.
Available drivers depend on platform, hardware, and system
installation. Typical drivers include X717 and OpenGL.

Do not create a journal file for this execution of CUBIT. This
option performs the same function as the Journal Off
command. The default behavior is to create a new journal file
for every execution of CUBIT.

Write the journal entries to <file>. The file will be overwritten if
it already exists.

Only create a maximum of <$val> default journal files. Default
journal files are of the form cubit#.jou where # is a number in
the range 01 to 999.

Turn off the ability to delete files with the delete file
'<filename>' command.

Turn off the file overwrite check flag. Files that are written may
then overwrite (erase) old files with the same name with no
warning. This is typically useful when re-running journal files,
in order to overwrite existing output files. See the set File
Overwrite Check [ON|off] command.

Restore the specified filename (or "cubit_geom") mesh and
ACIS files, e.g. cubit_geom.save.g and cubit_geom.save.sat.

Do not echo commands to the console. This option performs
the same function as the Echo Off command. The default
behavior is to echo commands to the console.

Set to "on" the debug message flags indicated by <$val>,
where <$val> is a comma-separated list of integers or ranges
of integers, e.g. 1,3,8-10.

Turn {on|off} the printing of information messages from
CUBIT to the console.

Turn {on|off} the printing of warning messages from CUBIT to
the console.

Allows the user to specify a journal file from the command line.

Read the mesh and geometry definition data in the FASTQ file
<file> and interpret the data as FASTQ commands. See T. D.
Blacker, FASTQ Users Manual Version 1.2, SAND88-1326,
Sandia National Laboratories, (1988). for a description of the
FASTQ file format.

Input files to be read and executed by CUBIT. Files are
processed in the order listed, and afterwards interactive
command input can be entered (unless the -batch option is

15

Cubit 12.1 User Documentation

<variable=value>

16

used.)

APREPRO variable-value pairs to be used in the CUBIT
session. Values can be either doubles or character type
(character values must be surrounded by double quotes.),
Command options can also be specified using the
CUBIT_OPT environment variable. (See Environment
Variables .)

mCubit 12.1 User Documentation

Initialization Files

CUBIT can execute commands on startup, before interactive command input, through initialization files. This is useful if
the user frequently uses the same settings.

On Unix or Windows, the following files are played back in order, if they exist, at startup:

<$CUBIT_DIR/.cubit.install
$HOMEDRIVE$HOMEPATH/.cubit
$HOME/.cubit

$(current working directory)/.cubit

Where $(current working directory) is determined by the program itself and words starting with '$' are environment
variables.

If the -initfile <filename> option is used on the command that starts cubit, then the other init files are skipped and only
the specified filename is played back.

The $CUBIT_DIR file is installation specific. The $HOME file is user specific. The $PWD file is run-specific, read when
starting up cubit from a particular meshing problem's subdirectory.

These files are typically used to perform initialization commands that do not change from one execution to the next, such
as turning off journal file output, specifying default mouse buttons, setting geometric and mesh entity colors, and setting
the size of the graphics window.

17

mCubit 12.1 User Documentation

Environment Variables

CUBIT can interpret the following environment variables. These settings are only applicable to the Command Line Version

of CUBIT and do not apply to the Graphical User Interface. See also the CUBIT_STEP_PATH and CUBIT_IGES_PATH

environment variables. See also the CUBIT_DIR, HOMEDRIVE and HOMEPATH settings.

DISPLAY

CUBIT_OPT

CUBIT_Journal

The graphics window or GUI will pop-up on the specified X-Window display. This is
useful for running CUBIT across a network, or on a machine with more than one
monitor. Unix only.

Execution command line parameter options. Any option that is valid from the
command line may be used in this environment variable. See Execution Command

Syntax.

Specifies path and name to use for journal file. The specified path may contain the
following %-escape sequences:

%a - abbreviated weekday name
%A - full weekday name

%Db - abbreviated month name
%B - full month name

%d - date of the month [01,31]
%H - hour (24-hour clock) [00,23]
%I - hour (12-hour clock) [01,12]
%j - day of the year [1,366]

%m - month number [1,12]

%M - minute [00,59]

%n - replaced with the next available number between 01 and 999.
%p - "a.m." or "p.m."

%S - seconds [00,61]

%u - weekday [1,7], 1 is Monday
%U - week of year [00,53]

%w - weekday [0,6], 0 is Sunday
%y - year without century [00,99]
%Y - year with century (e.g. 1999)
%% - a'%' character

The default value is "cubit%n.jou". This creates journal files in the current directory
named "cubit00.jou", "cubit01.jou", "cubit02.jou", etc. To keep the same naming
scheme but create the files the /tmp directory, set CUBIT_JOURNAL to "/tmp/cubit
%n.jou"

To create journal files in directories according to the day of the week, first create
directories named "Mon", "Tues", etc. CUBIT will not create them for you. Next set
CUBIT_JOURNAL to

"%al%n.jou". This will create journal files named "01.jou" through "999.jou" in the
appropriate directory for the current day of the week.

18

Environment Variables

19

»
mCubit 12.1 User Documentation

Command Syntax

The execution of CUBIT is controlled either by entering commands from the command line or by reading them in from a
journal file. Throughout this document, each function or process will have a description of the corresponding CUBIT
command; in this section, general conventions for command syntax will be described. The user can obtain a quick guide
to proper command format by issuing the <keyword> help command; see Command Line Help for details.

CUBIT commands are described in this manual and in the help output using the following conventions. An example of a
typical CUBIT command is:

Volume <range> Scheme Sweep [Source [Surface] <range>] [Target [Surface] <range>] [Rotate {on | OFF}]

The commands recognized by CUBIT are free-format and abide by the following syntax conventions.

1. Case is not significant.
The "#" character in any command line begins a comment. The "#" and any characters following it on the same
line are ignored. Although note that the "#" character can also be used to start an Aprepro statement. See the
Aprepro documentation for more information.

3. Commands may be abbreviated as long as enough characters are used to distinguish it from other commands.

4. The meaning and type of command parameters depend on the keyword. Some parameters used in CUBIT
commands are:

Numeric: A numeric parameter may be a real number or an integer. A real number may be in any legal C or
FORTRAN numeric format (for example, 1, 0.2, -1e-2). An integer parameter may be in any legal decimal
integer format (for example, 1, 100, 1000, but not 1.5, 1.0, Ox1F).

String: A string parameter is a literal character string contained within single or double quotes. For example,
‘This is a string' .

Filename: When a command requires a filename, the filename must be enclosed in single or double quotes. If
no path is specified, the file is understood to be in the current working directory. After entering a portion of a
filename, typing a '?' will complete the filename, or as much of the filename as possible if there is more than one
possible match.

A filename parameter must specify a legal filename on the system on which CUBIT is running. The filename
may be specified using either a relative path (../cubit/mesh.jou), a fully-qualified path
(/lhomel/jdoe/cubit/mesh.jou), or no path; in the latter case, the file must be in the working directory (See
Environment Commands for details.) Environment variables and aliases may also be used in the filename
specification; for example, the C-Shell shorthand of referring to a file relative to the user's login directory
(~jdoe/cubit/mesh.jou) is valid.

Toggle: Some commands require a "toggle" keyword to enable or disable a setting or option. Valid toggle
keywords are "on", "yes", and "true" to enable the option; and "off", "no", and "false" to disable the option.

5. Each command typically has either:

* an action keyword or "verb" followed by a variable number of parameters. For example:
Mesh Volume 1
Here Mesh is the verb and Volume 1 is the parameter.

* or a selector keyword or "noun" followed by a name and value of an attribute of the entity indicated. For
example:

Volume 1 Scheme Sweep Source 1 Target 2

20

Command Syntax

Here Volume 1 is the noun, Scheme is the attribute, and the remaining data are parameters to the Scheme
keyword.

The notation conventions used in the command descriptions in this document are:

° The command will be shown in a format that looks like this:

. A word enclosed in angle brackets (<parameter>) signifies a user-specified parameter. The value can be an
integer, a range of integers, a real number, a string, or a string denoting a filename or toggle. The valid value
types should be evident from the command or the command description.

. A series of words delimited by a vertical bar (choice1 | choice2 | choice3) signifies a choice between the
parameters listed.

* Atoggle parameter listed in ALL CAPS signifies the default setting.

. A word that is not enclosed in any brackets, or is enclosed in curly brackets ({required}) signifies required
input.

. A word enclosed in square brackets ([optional]) signifies optional input which can be entered to modify the
default behavior of the command.

* Acurly bracket that is inside a square bracket (e.g. [Rotate {on|OFF}]) is only required if that optional modifier
is used.

21

mCubit 12.1 User Documentation

Command Line Help

In addition to the documentation you are currently viewing, CUBIT can give help on command syntax from the command
line. For help on a particular command or keyword, the user can simply type help <keyword> . In addition, if the user has
typed part of a command and is uncertain of the syntax of the remainder of the command, they can type a question mark
? and help will be printed for the sequence of keywords currently entered. It is important to note that if the user has typed
the keywords out of order, then no help will be found. If the user is not sure of the correct order of the keywords, the
ampersand & key will search on all occurrences of whatever keywords are entered, regardless of the order. The results of
this type of command are shown in the following listing.

CUBIT> volume 3 label ?
Completing commands starting with: volume, label.
Help not found for the specified word order.

CUBIT> volume 3 label &
Help for words: volume & label
Label Volume [on | off | name [only|id] | id | interval | size | scheme | merge | firmness]

CUBIT> label volume 3 ?
Completing commands starting with: label, volume.
Label Volume [on|off[name [only|ids]|ids|interval|size|scheme|merge|firmness]

22

mCubit 12.1 User Documentation

Environment Commands

. Working Directory
. File Manipulation

. CPU Time
. Comment
. History

. Error Logging
. Determining the CUBIT Version

. Echoing Commands
. Digits Displayed

Working Directory

The working directory is the current directory where journal files are saved. To list the current directory type
pwd

The current path will be echoed to the screen. By default, the current directory is the directory from which CUBIT was
launched. The command to change the current directory is

cd "<new_path>"

The new path may be an absolute reference, or relative to the current directory. The <TAB> key will complete unique file
references.

File Manipulation

A helpful addition is the ability to do a directory listing of a directory. The command for this is

Is ['<file_name>"]

or

dir ['<file_name>"]

Note also that you can delete files from the command line. The command for this is

Delete File ['<file_name>"]

The file name may include the wildcard character *, but not the wildcard character ?, since the ? is used for command
completion. File deletion from the command line can also be disabled. If deletions are set to off files cannot be deleted
from the cubit command line.

Set Deletions [ON|Off]

The mkdir command is used to create a new directory. The syntax for this command is:

Mkdir "<directory_name>"

This creates a new directory with the specified name and path. The command accepts an absolute path, a relative path,

or no path. If a relative path is specified, it is relative to the current working directory, which can be seen by typing 'pwd' at
the cubit command prompt. If no path is specified, the new directory is created in the current working directory.

23

Cubit 12.1 User Documentation

The command succeeds if the specified directory was successfully created, or if the specified directory already exists. The
command fails if the new directory's immediate parent directory does not exist or is not a directory.

CPU Time

At times it is important to see how much cpu time is being used by a command. One function available to do this is the
timer command. The syntax for this command is:

Timer [Start|Stop]

The start option will start a CPU timer that will continue until the stop command is issued. The elapsed time will be printed
out on the command line. If no arguments are given, the command will act like a toggle.

Comment

This keyword allows you to add comments without affecting the behavior of CUBIT.

Comment ['<text_to_print>"] [<aprepro_var>] [<numeric_value>]

The comment command can take multiple arguments. If an argument is an unquoted word, it is treated as an aprepro
variable and its value is printed out. Quoted strings are printed verbatim, and numbers are printed as they would be in a
journal string. For example:

CUBIT> #{x=5}

CUBIT> #{s="my string"}

CUBIT> comment "x is" x "and s is" s

User Comment: x is 5 and s is my string

Journaled Command: comment "x is" x "and s is" s

History
This command allows you to display a listing of your previous commands.
History <number_of_lines>

For example, if you type history 10, the most recent 10 commands will be echoed to the input window.

Error Logging
[set] Logging Errors {Off | On File '<filename>'[Resume]}

This setting will allow users to echo error messages to a separate log file. The resume option will allow output to be
appended to existing files instead of overwriting them. For more information on CUBIT environment settings see List Cubit
Environment.

Determining the CUBIT Version

To determine information on version numbers, enter the command Version. This command reports the CUBIT version
number, the date and time the executable was compiled, and the version numbers of the ACIS solid modeler and the VTK
library linked into the executable. This information is useful when discussing available capabilities or software problems
with CUBIT developers.

Echoing Commands

By default, commands entered by the user will be echoed to the terminal. The echo of commands is controlled with the
command:

[Set] Echo {On | Off}

Digits Displayed

24

Environment Commands

CUBIT uses all available precision internally, but by default will only print out a certain number of digits in order for
columns to line up nicely. The user can override that with the "set digits" command:

Set Digits [<num_to_list=-1>]

If the digits are set to -1, then the default number of digits for pretty formatting are used. If the digits are set to a specific
number, such as 15, more digits of accuracy can be displayed. This may be useful when checking the exact position and
size of geometric features.

The number of digits used for listing positions, vectors and lengths can be listed using the following command:

List Digits

Examples:

CUBIT> set digits 6

Coordinates and lengths will be listed with up to 6 digits.

CUBIT> set digits 20

For this platform, max digits = 15. Coordinates and lengths will be listed with up to 15 digits.

CUBIT> set digits -1

To reset digits to default, use 'set digits -1'

The number of coordinate and length digits listed will vary depending on the context.

25

mCubit 12.1 User Documentation

Saving and Restoring a Cubit Session

There are currently two ways to save/restore a model in CUBIT. A file can be saved with either the Exodus or CUBIT File
method. The method of choice is determined by a set command. The CUBIT method is the default.

Set Save [exodus|CUBIT] [Backups <number>]

CUBIT File Method

.
‘Z
D
=

e e
géno
s 3

e o
FF
o |©
=t

The CUBIT file is a binary cross-platform compatible file for the storage of a Cubit model that is compact in size and
efficient to access. It includes both the geometry and the associated mesh, groups, blocks, sidesets, and nodesets. Mesh
and geometry are restored from the Cubit file in exactly the same state as when saved. For example, element faces and
edges are persistent, as well as mesh and geometry ids. The Graphical User Interface version of CUBIT also provides a
toolbar with direct access to file operations using the CUBIT File method described here.

New

Creates a new blank model with default name, closing the current model. The New command essentially acts like the
reset command.

Open ‘<filename>'

Opens an existing *.cub file, closing the current model.

Save

A default file name is assigned when CUBIT is started (in very much the same way the journal files are assigned on
startup) in the form cubit01.cub, for example. The current model filename is displayed on the title bar of the CUBIT
window. Typing save at any time during your session will save the current model to the assigned *.cub file. The *.cub file
includes the *.sat file and the mesh. Groups, blocks, sidesets and nodesets are also saved within the *.cub file. To change
the name of the current model, or to save the model's current geometry to a different file, use the save as command. Note
that 'save <file.cub>' is NOT a valid command.

Save
Save As 'filename.cub' [Overwrite]

The set file overwrite command can be toggled on and off to allow overwriting when using the save as command. The
command is defaulted to not allow overwriting.

Set File Overwrite [On|OFF]
A backup file is created by default, allowing access to previous states of the model. The backup files are named *.cub.1,
*.cub.2... The user can set the total number of backups created per model with the following command (the default

number of backups is 99,999):

Set Save Backups <number>

26

Saving and Restoring a Cubit Session

As soon as the number of model backups reaches the maximum, the lowest numbered backup file will be removed upon
subsequent backup creation.

To check on the status of a 'set' command, type in the command in question without any options. For example, to check
which save method is currently toggled, type:

Set Save

Import

Appends a *.cub file to an existing model.
Import Cubit 'filename.cub'

Export

In addition to saving an entire model, one can use the export command to save only a portion of a model. The geometry
and associated mesh, groups, blocks, sidesets and nodesets are exported. Only bodies or free surfaces, curves or
vertices can be exported to a Cubit file.

Export Cubit 'filename.cub' entity-list

27

mCubit 12.1 User Documentation

Interrupting Running Tasks

Many operations in the command line version of CUBIT can be interrupted using <Control>-C. Pressing <Control>-C will
attempt to interrupt the running process as soon as feasible, returning the user back to the command line. Not all
operations may be interrupted, and many can only be interrupted at certain stages. Any current tasks are canceled as
soon as it is feasible to do so, including playback of journal files. The playback of a journal file is always stopped, even if
the current running task cannot be interrupted. The journal file will stop at the next opportunity, when the current task is
completed. Interrupted journal files may be resumed at the next command. See the section titled Controlling Playback of

Journal Files for more information on controlling playback of journal files.

To interrupt processes in the Graphical User Interface, see the documentation for the GUI application window.

28

mCubit 12.1 User Documentation

CUBIT Application Window

The default CUBIT Application Window is shown in the following image.

.~ Drop Down Menus

Fie [Ve Duply Took elp

LY NENIN PrFITIIRAIELSCRQAHGENDIDT

LOdb=i@ AHAEDY - +~-name

Powss Tonk: [
Toolbarsﬂf—f

& W (2 ¥
Currerl View | Full Tres L4

o B Propered
B dssenbies
[Boundary Condbons
H L s
£ Msterialy

i Voluress

Power Tools Graphics Window

-

L]

Assanblas.
Propsrtion Pags & x

Parlorin Adted

ki E@E=E ®)

L

Properties Page

Commard Lire & x
delstung LI00 sdges from datarsis -

s daletiteg L3N] neded [fom datalade. ..

Deafault CUBIT model file iz "CoVFrogram Fils

®LCURIT 38, SvoubinDld, oul’

Command Line

cumIte |
_Commard f}_Emer [Hestory |

‘orking Daetany: O Progran FlssOUEIT 11.2

FEEd 9 ep s -

Coemrrasned Faned [

Pocde - Mathing

L B

bty - Surduce

O] |l
DopnEn
[@[u]s|o]a]x]
OO0C

Seloct Surfaces

o -
Ao Fafor
Fires 1 oo

Curmertt Soec 0.9507Z3
[=]) Check For Creerlapping Surfaces

[e |
Eil [wen |
Command Panels

)

Figure 1. The CUBIT Application Window

Graphics Window- The current model will be displayed here. Graphical picking and view transformations are done here.

Power Tools - Geometry tree hierarchy view, geometry analysis and repair tool, meshing tool, meshing quality tool, and

ITEM Wizard.

Property Editor - The Property Editor lists attributes of the current entity selection. Some of these properties can be

edited from the window.

Command Panel - Most Cubit commands are available through the command panels. The panels are arranged

topologically, by mode.

Command Line Workspace - The command line workspace contains both the cubit command and error windows. The
command window is used to enter cubit commands and view the output. The error window is used to view cubit errors.

Drop Down Menus - Standard file operations, Cubit setup and defaults, display modes, and other functionality is

available in the pull-down menus.

29

Cubit 12.1 User Documentation

Toolbars - The most commonly used features are available by clicking toolbar icons.

Context Sensitive Help in the GUI

The Graphical User Interface has a context-sensitive help system. To obtain help using a specific window or control panel,
press F1 when the focus is in the desired window. It may be necessary to click inside a text box to switch focus to a
particular window. If no context specific help is available, it will open the cubit help documentation where you can search
for a particular topic.

Customizing the Application Window

All windows in the CUBIT Application can be Floated or Docked. In the default configuration, all windows are docked.
When a window is docked the user can click on the area indicated below.

CTUBIT= |

4—— Click and drag from here

% Command & Emor A History S

Figure 2. A docked window. Click and drag to float.

By dragging with the left mouse button held down, the window will be un-docked from the Application Window. Dragging
the window to another location on the Application Window and releasing the mouse button will cause it to dock again in a
new location. The bounding box of the window will automatically change to fit the dimensions of the window as it is
dragged. Releasing the mouse button while the window is not near an edge will cause the window to Float. To stop the
window from automatically docking, hold the CONTROL key down while dragging.

30

CUBIT Application Window

o £V =V i B % B

Command Panel
Maode - Geametry

6,

Enkikyw -

6

Ackion - Create

(=
B &

Brick,

Brick Dirmensions
% (widtR) | 10

% (height)

Z (depth)

Presview Apply

Floating Window

Figure 3. A Floating Window

When a window is floating, as shown in Figure 3, it is possible to dock it by clicking the title bar of the window and
dragging it to its new docked location.

Note: Double clicking on the title bar of an floating window will cause the window to redock in its last docked position.

31

Cubit 12.1 User Documentation

Interrupting Running Tasks

Many commands can be interrupted in the middle of execution. The GUI has a cancel button that can be used to interrupt
the current command. The cancel button will turn red when a command can be interrupted. The cancel button has an 'x'
on it, and is located on the status bar, which is at the bottom of the application.

32

a1m1Cubit 12.1 User Documentation

Command Panel Functionality

The Command Panel is arranged first by mode on the top row of buttons. Modes are arranged by task. All of the geometry
related tasks, for instance, can be found under the Geometry mode. When a mode is selected, a second row of buttons
becomes available. The second row of buttons shown depends on the selected mode. For example, if Geometry,
Meshing, or Materials and BCs is selected, the second button row will show entity types. Entities are those specific to the
mode.

. Geometry panel entity level buttons include Volumes, Surfaces, Curves, Vertices, and Groups.

o Meshing panel entity level buttons include Volumes, Surfaces, Curves, Vertices, Groups, Hexes, Tets, Quads,
Tris, Bars, and Nodes.

. Materials and BCs entity level buttons include Exodus Nodesets, Exodus Sidesets, Exodus Blocks, Create
Boundary Conditions, Modify Boundary Conditions, List Boundary Conditions, Draw Boundary Conditions, Make
a Boundary Condition current, and Delete Boundary Conditions.

The second row of buttons for Analysis Setup and Post Processing are not arranged by entity. Rather, the buttons show
specific capabilities.

The third row of buttons contains Actions, such as Create, Delete, Modify, and so forth. The following shows an example

of Geometry/Volume actions.
Control Panel [x}

Mode - Geomety

394ED

—Entity

"‘@ Al @

Selecting an Action will display a command panel. The Geometry/Volume/Create command panel is shown below.

33

Cubit 12.1 User Documentation

Control Panel |

tode - Geometny

39O

E ntitj;l Volumne

Achan - Create

R IGEIEED
SRS
jérick -]

-Brick Dimensions
¥ [width] |10

¥ [height) |

Z [depth] |

il Apply

All command panels are constructed similarly. Each abstracts a set of Cubit commands. Options are selected using
checkboxes, radio buttons, combo boxes, edit fields, and other standard GUI widgets. Each command panel includes an
Apply button. Pressing the Apply button will generate a command to Cubit. Nothing happens until and unless the Apply
button is pressed.

Note: The edit fields are free form, which means the user may enter any valid string into the fields. Any string that
is valid for the command line is valid for the command panel edit fields.

Where possible, default values are placed into edit fields. At any time, with the cursor placed over a blank portion of the
command panel, the user may right-click to select Reset Data which will clear all fields and replace default values.

ID Input Entry Methods

The ID Input Fields provide a location where Geometric IDs, required for the current command, can be entered. IDs can
be entered in several ways:

Simple Keyboard entry

ID numbers can be entered directly in the field. Each ID must be separated with a space. Select the field first before
typing.

Graphical selection

IDs can be entered automatically by selecting entities directly in the Graphics Window. The current entity available for
selection is based on the current entity selection mode. In some cases, not all entities of the current entity selection mode
will be available for picking. The program may automatically filter the applicable entities based on the context of the
current command

Geometry Tree selection

IDs may be entered by selecting the corresponding geometric entity from the geometry tree. To select multiple entities use
the <ctrl> key.

34

Command Panel Functionality

Ranges

A range of IDs may be typed into the field. For example:

1to5

will automatically enter all IDs from 1 to 5 inclusive in the field. Keywords such as all and except can also be used. Any
range that can be entered directly on a CUBIT command line can also be used in the ID input field. See Command Line
Entity Specification for a description of the syntax.

As Part of Other Entities

Syntax can be entered in the ID Input field that will specify an entity based upon its topological relationship to other
entities For example, if a Vertex Selection Type Button was highlighted, entering

in surf1

will automatically enter all vertices in surface 1 into the Input Field. CUBIT has a rich set of syntax rules for specifying
entities based upon topology relationships. See Command Line Entity Specification for a description.

In Groups

Entities that are part of groups may be specified in the ID Input Field. For example, if the Vertex Selection Type Button is
highlighted, entering:

in picked
will automatically enter all vertices in the picked group into the active ID Input Field.
Dragged and Dropped

Entities can be dragged and dropped into the ID Input Field from the Tree View window.

Right-Click Context Menu for ID Input Fields

When the right mouse button is selected while in an /D Input Field, the following menu options will appear:

° Done Selecting - Enters current selection and removes cursor from selection window
. Select Other - Displays selection dialog

* Select All - Selects all available entities and puts "select all" in input window

. Highlight - Highlight the current selection

* Zoom To - Zooms to current entity in the selection field within the graphics window

o Rotate About - Change center of rotation to the center of selected entity

. Draw - Draws the entities listed in the input field within the graphics window

. Isolate - Turns visibility off for all entities other than the selected entities. Similar to draw command, but
entities remain hidden with a graphics refresh. Select All Visible in the graphics window to turn visibility back
on.

. Visibility Off - Removes the current entity from the input window and hides it on the graphics screen

. Mesh - Mesh the listed entities using either an assigned scheme or a default scheme where none is assigned
. Delete Mesh - Deletes mesh on all entities listed in the input window

. Reset Entity - rehighlights the entities listed in the input field within the graphics window

. List Info - Displays a sub menu of choices including basic, geometry, and mesh. Selecting the basic option will
list schemes, visibility, and interval assignments. The geometry option will add information about the geometry
and geometry engine. The mesh option will list information about mesh entities.

. Delete - Deletes the current geometric object in the input window.

Value Fields

Integer and real values pertinent to the command are entered in this window. Input placed in parenthesis { } will be
evaluated when the command is executed. For example:

35

Cubit 12.1 User Documentation

{10%0.02}

is valid input. Additionally, any APREPRO syntax is valid in the Value Field, including mathematical functions and boolean
operations. See the section, APREPRO for a description of syntax.

Advancing Pickwidgets

Some command panels have several id input fields such as the Mesh>Hex>Create panel. A convenience feature
implemented for such panels is an advancing pickwidget feature. Pressing the middle mouse button after selecting an
entity will advance to the next id input field.

36

MCubit 12.1 User Documentation

View Navigation in the GUI

There are two different default paradigms for view navigation: Cubit command line and Cubit GUI. The user is allowed to
customize the mouse settings as desired. Mouse settings in the GUI are modified by accessing the Tools pull-down
menu, then select Options. The Mouse Settings dialog is shown below (See Mouse-Based Navigation for the command
line version).

£ Options

."'E'_'Istm o Mouze Button Function
— Dizplay
— General Lefk Button Select
"'E?”m'-'r' Diefauts Left Button + Contial Mukiple Select
=-History Midddle Buttan T ab Off Pickes
ke Right Buttan Contest Mernu
Label Defaults
o Lapout Leit Bution + Dirag | Fiolate x|
=~ Cutit Layout Middle Button + Dirag | Zoom _TJ
-~ Mezh Delaults
- TN R Buton -+ Oreg | En =l
~Post Frocessor | Mote: Use Zoom + Conirol to select 5§ zoom bos |
= Wuabty Defauls
| Mote; Mac ugers substibube "Command” for "Cortnol”, |
Emudate Command Line Setings
Save Claze
Figure 1. Mouse Settings Dialog
Rotations

Where the cursor is in the graphics window will dictate how the view will be rotated. If the cursor is outside of an imaginary
circle, shown in Figure 2, the view will be rotated in 2d, around an axis normal to the screen. If it is inside the circle, as in
Figure 3, the rotations will be in 3d, about the current view spin center. The spin center can be changed to any x-y-z
location. The most common way is by zooming to an entity, which changes the spin center to the centroid of that entity.
The "view at" command will change the spin center without zooming:

37

Cubit 12.1 User Documentation

View at vertex 3

//>
e
e |
N
[~ 7
ki Tl
e W— e ————

Figure 2. With the mouse pointer outside the circle the view is rotated about an axis normal to the screen

.-"J__

.h e
Figure 3. With the mouse pointer inside the circle the view is rotated about the current spin center

Zooming

To zoom, press the appropriate buttons or keys and move the cursor vertically, as shown in Figure 4. The wheel on a
wheel mouse will also zoom.

38

View Navigation in the GUI

Figure 4. Move the mouse pointer vertically to zoom in and out

Panning

To pan, press the appropriate buttons or keys and move the cursor horizontally or vertically, as shown in Figure 5.

/

Figure 5. Move the mouse pointer horizontally or vertically to pan the view

39

mCubit 12.1 User Documentation

Selecting Entities in the GUI

Geometry, mesh entities, and boundary conditions can be selected with the left mouse button directly in the graphics

window. Before selecting any entity, however, the correct selection mode must be chosen. This dictates which entity types

will be available for selection in the graphics window. The Select Toolbars, which are located above the graphics window

by default, are used to change the entity selection modes.

Togaole
Select Selected Togale
Groups Enclosedi Between
of Select Geometry Select Mesh Extended Folygon/

En}mes P .. . Enties — \\ Box Eelect
MM

@ﬁﬁﬂ/°+HH&$>

ndes arFaces

-
‘Bodies ‘Jemces Guad SE|EE1
#-Ra
Volumes CLMES Element Elements Elements Y

Surfaces
Elerment
Edges Elements

orFaces

Figure 1. The Selection Toolbar for Geometry and Mesh Entities

Select Select Select
Select Select Select Inlet Mass Inlet Fairfield

Forces Heatfluxes Ternperatures Flnv{s ‘v’ell:ui:ities Pressures Symmetries

Hp S [R AHAE RS B
/ / | y NN

Select
Pressures Displacements Convections Inlet Dutlet Periodics

Select =elect Select Select Select

Fressures Pressures

Figure 2. The Selection Toolbar for Boundary Conditions

Triangle Elements

Figures 1 and 2 shows the selection toolbars. Selecting one of the entity selection modes will only permit selection of that
particular entity type within the graphics window. These selections will not override a Pick Widget in the command panel.

If both volume and surface entities are picked on the select toolbar, a single click will select the surface while a double

click will select the volume. More detailed information on selecting and specifying entities can be found in Entity Selection_

and Filtering .

40

Selecting Entities in the GUI

Pre-Selection

When the mouse cursor is over an entity type that has been selected from the Pick toolbar, that entity will become
highlighted. This is called pre-selection and is used as a graphical guide to show which entity will be picked when the
mouse button is clicked.

Graphics pre-selection may slow down your graphics speed for large models. You can disable pre-selection from the
Tools->Options dialog box.

Polygon and Box Select

The polygon/box selection feature allows you to select entities by drawing a box or polygon on the screen. To draw box on
the screen press and hold the <CTRL> button* while clicking and dragging the left mouse button. Release the left mouse
to complete the box select. To create a polygon selection, press and hold the <CTRL>* button while clicking and dragging
the left mouse button. Click the left mouse button to create another side for the polygon. Press either of the other buttons
to close the polygon and complete the selection. Only entities that are in active selection mode will be selected. To
change between the polygon or box method, press the Toggle Between Polygon/Box Select button on the Select Toolbar.
Clicking the Toggle Selected Enclosed/Extended button will toggle between Enclosed Selection and Extended Selection.
Enclosed selection will only select entities that are fully enclosed within the bounding box or polygon. Extended selection
will select entities that are either fully OR partially enclosed within the bounding box. Toggling the the Select X-Ray will
select entities that are hidden behind other entities. X-ray selection will only apply to smoothshade and hiddenline
graphics modes.

*Note: For Mac computers use the command (or apple) button for polygon or box select.

41

mCubit 12.1 User Documentation

Key Press Commands for the GUI

Several commands have a key press shortcut. These commands will be executed with respect to the currently selected
entities; see the following table:

Shortcut Key Command

| List information about the current entity to the output window.

i Toggle the visibility of the selected entity (make invisible or visible).

e Echo entity id to command line.
Tabh Select the next entity.

m Select the previous entity.

Toggle picking of vertices.
Toggle picking of curves.

Toggle picking of surfaces.
Toggle picking of volumes.

Toggle picking of groups.

0 Toggle picking of mesh nodes
1 Toggle picking of mesh edges.
Toggle picking of mesh faces.

3 Toggle picking of mesh hexes.

Refresh graphics window

N

s Activate/inactivate graphics clipping plane

Right Click Commands for the GUI Graphics
Window

Clicking the Right mouse button in the graphics window will bring up a menu. One of two menus will appear, depending
on whether an entity is currently selected.

With Entity Selected

. Select Other- Brings up a dialog with alternate entity selections

° Zoom To - Zoom to the selected entity

. Rotate About - Changes the center of rotation to the centroid of this entity
. Draw - Draw the selected entity

o Isolate - Turn all but the selected entities invisible

. Add to BC/Group/Part - Opens a dialog box where you can add the selected entity to an existing boundary
condition, group, or part.

. Remove from BC/Group/Part - Opens a dialog box where you can remove the selected entity from an existing
boundary condition, group, or part.

. Add to Picked Group - Add this entity to the picked group.

. Remove from Picked Group - Remove this entity from the picked group
* Visibility Off - Turn selected entities invisible

o Mesh - Mesh the selected entities

. Measure - Measures between two entities, or two vertices on a curve.

. Delete Mesh - Delete the mesh on selected entities (but not interval or scheme information)
. Reset Entity - Reset selected entities by deleting mesh and interval information

. List Info - Show the menu of additional list commands

. Delete - Delete selected entities

Without Entity Selected

. Reset Zoom - Reset zoom to original configuration

. Refresh- Refresh the graphics display

. All Visible - Make all entities visible

. Display Options - Opens Options Menu to display options

43

mCubit 12.1 User Documentation

Repositioning Nodes in the GUI

CUBIT provides the capability to reposition mesh nodes interactively from the graphics window. To use this feature, first
open the "Move Node" command panel on the GUI and select either Move XYZ or Normal to Surface.

Moving Nodes by XYZ offsets

Mode - Meshing

292
D e | x|
B PIH A |+

Action - Move Node

g R

= I R b

| Move xvZ ﬂ
Node 1D[z] |

—Move Mode

[w Constrained bo Geamnety

[Show Quality

Deka |

Deka® |

DekaZ |
_@ Fiezet Apply

Figure 1. The Move Node XYZ command panel

Figure 1 shows the Move Node panel with the Move XYZ choice selected, which is located under the Mesh-Node panels.
The interactive node movement is only available from this window. When the nodes are selected, the neighboring mesh
elements are also highlighted. Nodes with gray handles can be moved by dragging the nodes in the window. The
Constrained to Geometry option will force the nodes to remain constrained to their parent geometry.

The Show Quality option will graphically display the quality based on a color-coded scale. A color bar will appear on the
screen that shows the various quality values by color.

44

Repositioning Nodes in the GUI

Figure 2. The Show Quality option

Nodes can be repositioned individually, or in groups, as shown in Figure 2. In this example, the Show Quality option is
selected, displaying the color scale next to the entity. See Mesh Quality Command Syntax for a description of how to
resize and reposition the color bar.

Moving Nodes Normal to Surfaces

Nodes can also be repositioned relative to surface normals. The command panel is shown below.

45

Cubit 12.1 User Documentation

Control Panel x|

—Made - Meshing

39AEHDO

e |+ |
sl | H

—&ction - Move Node

P | X
[
T

Surface D I:.:.:.

Digtance I

@ | Rezet Apply

Figure 1. The Move Node Normal to Surface command panel

46

mCubit 12.1 User Documentation

Viewing Curve Valence

To view your model based on a color-coded curve valence scale, click on the curve valence button on the Display
Toolbar. Curve valence refers to the number of surfaces attached to each curve. Curves with exactly two surfaces
attached are shown in blue. Curves with exactly one surface are shown in red. Curves with more than two attached
surfaces are shown in white.

This tool is useful for quickly visualizing merged/unmerged topology. Merged curves will usually have a valence > 2, while
unmerged curves typically have a valence of 2. Curves with a valence of 1 may indicate a floating surface.

47

mCubit 12.1 User Documentation

Geometry Tree

The geometry tree provides a complete graphical hierarchical representation of the parent child relationship of all
geometric entities. The tree is populated as the model is constructed by Cubit. In addition to showing a hierarchy of
geometric entities, the tree also shows Assembly Data, active Groups, and active Boundary Condition entities.

The tree works directly with the graphics window and picking. Selecting an entity in the tree will select the same entity in
the graphics window. Selecting an entity in the graphics window will highlight the tree entry if that entry is currently visible.
If an entity's visibility is turned off, the icon next to that entity in the geometry tree will disappear.

If the tree entry is not visible the user may press the Find button located at the bottom of the tree. The first occurrence of
the selected entity will be shown on the tree.

Virtual entities have a small (v) after the name to indicate that they are virtual entities.

48

Geometry Tree

Power Tools

@ @2 [« |

Current Yigw |Fu|| Tree

Mame D Properties

@2 Assemblies
= BB Boundary Conditions
20 CFD
= =34 FEA
T Blocks
EH side Sets
3 Mode Sets
|:¥‘- Faorces
E Pressures
E Tempuratures
&=y Displacements
20 Convections
5> Heat Fluxes
[=] 55 aroups
& picked 1
= 4} Materials
4 Material 1
= i@ Volumes
£ Yolurme 1 (v) 1
£ Yolume 2 z
£ Yolume 3 3
£ volume 4 (v) 4
£ Yolume 5 5
£ Yolume & &
£ volume 7 7
£ Volume 13 (v} 13
£ volume 14 14
£ Yolume 15 15
£ Volume 16 (v} 16
£ Yolume 17 17
£ Yolume 16 15
£ Yolume 19 19
£ Yolume 20 20
£ volume 21 21
£ volume 24 24
£ Yolume 25 25
£ Yolume 26 26

Material

Figure 1. Geometry Tree Window

49

Cubit 12.1 User Documentation

Drag and Drop

The Tree View window supports drag and drop of geometric entities into existing boundary condition sets. To create
boundary conditions, see the Materials and Properties menu on the main control panel, or right-click on one of the
boundary condition labels and select the "Create New" option from the context menu. Geometric entities or groups can be
added to blocks, nodesets, or sidesets by dragging and dropping inside the tree view window. Assembly data may also be
organized in the geometry tree window through drag and drop.

Picked Group

The current selections in the graphics window can be added to a "picked group" by selecting the "Add to Picked Group"
from the Right click menu. Selections can also be added to the picked group by dragging and dropping onto the group
from the geometry tree window. The picked group can be substituted into any commands that use groups. To remove an
item from the picked group, use the "Remove from Group" option in the right click menu in the geometry tree or from the
graphics window.

nut YL K Nk’

MName | I | Froperties ﬂ
T T EPERERE (0]
]'T___E Modesets [0]

~EH Sidesets (0]
=l Gnoups
2 picked
|]j Surface 1
|]i| Surface 2

1
1
2
-l Surface 3 3
|]:| Surface 4 4
-1 Y olumes j
Surface 5 E

Figure 2. Picked Group

Right-Click Menu Functions

The geometry tree's context menu is sensitive to the type of item and the number of items selected. Functions that apply
to the item type and number of selected items are available from the context menu. These include the following:

. Zoom To - Available for all geometric entities

. Rotate About - Change the center of rotation to the centroid of the entity without zooming
. Fly-In - Animated zoom feature

. Locate - Labels the selected entity in the graphics window

. Draw - Draw this entity by itself.

. Isolate - Similar to Draw command, but the display will not be refreshed with a graphics reset. To redisplay the
model, select All Visible from the graphics window right-click menu.

* Transparency On/Off - Toggles transparency mode

. Visibility On/Off - Toggles visibility

. Rename - Allows you to rename entities from the tree. Clicking on a highlighted entity in the tree will do the
same thing. This will also work for boundary condition entities (blocks, nodesets and sidesets)

. Mesh - Mesh selected entity at current settings.

* Delete Mesh - Available for meshed entities

. Reset Entity - Deletes mesh, and returns all settings to default values.

50

Geometry Tree

Delete - Available when Volumes and Groups are selected.

Create New Assembly/Sub-assembly/Part - You must specify the absolute path to create a new assembly,
sub-assembly or part (e.g. /a1/p1). It may also be necessary to refresh the full tree before viewing changes.

Add Selected to Part- Add the selected volume in the graphics window to the selected part on the geometry
tree.

Remove from Metadata - Deletes the selected part or assembly metadata information. An assembly must be
empty to remove it

View Metadata - List metadata in the command line workspace

Rename Metadata - Allows you to rename a part or assembly

Clean Metadata - Removes all parts and assemblies that are not associated with any geometric entities.
List Volumes Without Parts - Lists all volumes that are not associated with a part in the output window
Show Part Name/Description -Toggles the display of the part name/description in the tree.

Goto Part - Finds the associated metadata part when a volume is selected.

Measure - Available when two entities are selected or 1 curve is selected

Refresh Full Tree - Used to return to main tree

Collapse Tree - Available when entities are selected.

View Descendants/Ancestors - Show this entity's individual hierarchy. Use the Refresh Full Tree option to
return to main tree view.

View Neighbors View adjacent entities. Use the Refresh Full Tree option to return to the main tree view.

Create New Volume - Available when the user right-clicks over the Volumes (parent) label. Opens the
geometry-volume-create panel

Import Geometry - Available when the user right-clicks over the Volumes (parent) label. Opens import dialog.
Create New Group - Available when the user right-clicks over the Groups (parent) label.

Clean Out Group - Available when groups are selected. Removes all entities from group.

Remove from Group - Available when groups are selected. Removes selected entity from the group.

Add Selected to Block/Nodeset/Sideset - Add the selected entity in the graphics window to the chosen block,
nodeset, or sideset in the geometry tree.

Delete Selected from Block/Nodeset/Sideset - Delete the selected entity in the graphics window from the
chosen block, nodeset, or sideset in the geometry tree.

Create New Block/Sideset/Nodeset - Available when the user right-clicks over the respective Boundary
Conditions (parent) label.

Create New <boundary condition> - Available when highlighting desired boundary condition in the tree
including CFD and FEA boundary conditions.

Draw Block/Sideset/Nodeset - Draws the selected block/nodeset/sideset on top of existing entities
Draw Sideset/Nodeset Only - Draws the selected nodeset/sideset independent of other entities
Delete Selected Boundary Condition - Deletes any selected boundary conditions

Draw Selected Boundary Condition - Draws selected boundary condition by itself

Draw Selected Boundary Condition (Add) - Draws multiple boundary conditions

List Selected Boundary Condition - Lists information about selected boundary conditions in the command line
window

Remove from Block/Sideset/Nodeset - Removes selected entity from the specified block, sideset or nodeset

Cleanup (Tets) - Issues cleanup command for selected block. Only applicable for blocks composed of tet
elements

Remesh (Tets) - Issues remesh command for selected block. Only applicable for blocks composed of tet
elements

List Info - List information about selected entity in the output window.

51

a1m1Cubit 12.1 User Documentation

Geometry Power Tools

The geometry power tools are located on the Tree View window under the blue geometry tab. In many cases, a model will
fail to mesh because of problems with the geometry. Since the range of geometry problems is so wide, and because
these problems can be hard to diagnose, the Geometry Power Tool has several built-in tools designed to analyze and
repair these problems. The Geometry Repair Tool analyzes geometry for small angles, overlap, small features, bad
geometry definition, blend surfaces, close loops, or mergeable entities that may affect meshing capability. It also contains
a powerful toolkit of geometry modification methods to fix these problems. All of the common geometry clean-up tools are
now in one place on the GUI menu. In addition, there is a window that lists results from geometry analysis in a tree format,
making it easier to find, diagnose, and solve geometry problems. And Cubit will save your settings, so you can run the
same diagnostic tests each time you use the geometry power tools.

3 & @] 2|
& Volume ID(s) |all

Shaortest Edge Length |1
I Show Options

_@ Analyze

Entity ID | Entity Data

Feal

= Wl 2
EEIEE

ki %

Figure 1. Geometry Power Tools

Geometry Analysis Tools

The geometry power tools contain an array of tests that can be run on geometry to diagnose potential problems for mesh
generation. To display a list of tests, click on the Show Options check box. By default all tests are selected and run on
geometry. Some tests may not apply to specific geometry, or may only need to be run once per geometry (i.e. bad
geometry definition test). Clicking on the box by each test will deselect it.

52

Geometry Power Tools

The geometry analysis inputs and tests are summarized below:

Shortest Edge Length -The shortest edge length is a value that is input by the user. It determines the minimum allowable
threshold for small features. It is used as an input to test for small curves, small surfaces, small volumes and close loops.
The default value for this is 1. This value should be changed relative to the size of the model. In a very broad sense, it
represents a desired mesh edge length. Curves and surfaces which are smaller than this size, and which may be
troublesome to mesh with the desired granularity, will be flagged and they can be removed or modified.

Bad Angle Upper/Lower Bounds - The bad angle upper/lower bounds are tolerances set by the user to determine the
definition of small or large angles. The default values are set at 350 degrees for the large angle and 10 degrees for the
small angle. These values are used to test for angles between curves, surfaces, and at tangential intersections.

Bad Angle Check - The bad angle check will test for small angles between curves, surfaces, and at tangential
intersections. The test will only look for curves or surfaces that are adjacent.

Tangential Intersection - A tangential intersection is formed when two parallel surfaces share an edge and have a 180
degree angle between them. The tangential intersection test is looking for the condition where two surfaces that meet
tangentially share a common edge, and each of the surfaces has another edge which resides on a third face and forms a
small angle as shown in the following example. Surface 1 and Surface 2 are tangential to each other and share a common
edge. Both Surface 1 and 2 have another edge which resides on Surface 3 and forms a small angle at the vertex common
to all three surfaces.

Figure 2. Tangential Intersection

Mergeable Entities Check - As it suggests, this test is looking for entities that overlap and that can be merged. Pressing
the "Merge all" button on the Power Tools will automatically merge all entities flagged by the merge test.

Overlap Check - The overlap tests look for geometry that are either overlapping or coincident (exactly on top of each
other). Keep in mind that some of these problems may disappear with imprinting and merging.

Small Features Check - Small features may be necessary and desirable in a model, but many times they are the result of
poor geometry translation or import, or they may just not be important to the analysis. The small features tests look for
small curves, small surfaces, and small volumes. These tests rely on the user-defined short edge length parameter. Small
curves, including zero-length curves such as hardpoints, are compared directly against the defined parameter, and
flagged if they less than or equal to the given parameter. Small surfaces and volumes, on the other hand, are compared
against their hydraulic radius. For surfaces the hydraulic radius is 4*surface_arealperimeter. For volumes the hydraulic
radius is 6*volume/surface_area.

53

Cubit 12.1 User Documentation

Bad Geometry Definition Check - Cubit uses third party libraries, such as ACIS from Spatial, Inc., or Granite from
Parametric Technology Corporation, for much of its geometric modeling capabilities. The bad geometry definition check
calls internal validation routines in these libraries, when available, to check for errors in geometry definition. If the third
party library does not provide validation capabilities, this check will not return anything. Note: ACIS and Granite are
trademarks of Spatial and PTC, respectively.

Blend Surface Check - A blend surface is a transition surface between two orthogonal planes, such as a fillet. The blend
surface check identifies the surfaces which meet this criterion. Many times these surfaces are candidates for the split
surface command or the remove surface command. The split surface command allows you to split these blend surfaces
into two surfaces, making it easier to mesh the volume. The remove surface command removes the surface and extends
the adjoining surfaces until they intersect.

Close Loops Check - Close loops (pronounced KLOS, not KLOZ) are two loops on a single surface for which the
shortest distance between loops is less than a user specified tolerance. The tolerance for close loops is the square of the
shortest edge length parameter. Close loops are common around holes and fillets, and are usually found where one loop
is entirely within the other loop. These surfaces are often candidates for removal, or tweaking.

Geometry Repair Tools

Note: Pressing most of the geometry tool buttons on the panel will only bring up applicable command panels on the
Control Panel. You must press the Apply button on the Control Panel to execute the command.

@Split Surface Button

The split surface tool is used to split a surface into two surfaces. This is useful for blend surfaces, for example, where
splitting a surface may facilitate sweeping. To select a surface for splitting, click on the surface in the tree view. To select
multiple surfaces in the window, hold the CTRL key* while selecting surfaces (surfaces must be attached to each other).
Then press the split surface button to bring up the Control Panel window with the ids of selected surfaces in the text input
window. The split surface menu is located on the Control Panel under Geometry-Surface-Modify. You must press the
Apply button for the command to be executed. You can also bring up the Split Surface menu by selecting surfaces in the
tree view and selecting Split from the right click menu.

*Note: For Mac computers, use the command key (or apple key) to select multiple entities

The healing function in Cubit is used to improve ACIS geometry that has been corrupted during file import due to
differences in tolerances, or inherent limitations in the parent system. These errors may include: geometric errors in
entities, gaps between entities, and the absence of connectivity information (topology). To heal a volume, select the
volume in the geometry repair tree view. Then press the heal button. You may also press the heal button without a
geometry selected in the window, and enter it later. The Control Panel window will come up under the Geometry-Volume-
Modify option with the selected volume id highlighted. If no entity is selected, or if another entity type is selected, the input
window will be blank. You can also open the healing control panel by selecting Heal from the right click menu in the
geometry power tools window.

The tweak command is used to eliminate gaps between entities or simplify geometry. The tweaking commands modify
geometry by offsetting, replacing, or removing surfaces, and extending attached surfaces to fill in the gaps. Tweaking can
be applied to surfaces, and it can be applied to curves with a valence no more than 2 at each vertex. It can also be
applied to some vertices. To tweak a surface, select the surface in the tree view. The Geometry-Surface-Modify control
panel will appear with the selected surface id in the input window.

Heal Button

Tweak Button

Tweaking is available for curves. Tweaking a curve creates a blended or chamfered edge between two orthogonal
surfaces. The curve option is located on the Geometry-Curve-Modify panel under the Blend/Chamfer pull-down option.

Tweaking is also available for some vertices. Tweaking a vertex creates a chamfered or filleted corner between three
orthogonal surfaces. The vertex option is located on the Geometry-Vertex-Modify panel under the Tweak pull-down menu.

Note: Only curves with valence 2 or less at each vertex are candidates for tweaking. Any other curve will cause
the Geometry-Surface-Modify menu to appear.

54

Geometry Power Tools

@Merge Button

The merge command is used to merge coincident surfaces, curves, and vertices into a single entity to ensure that mesh
topology is identical at intersections. Unlike other buttons on the geometry repair panel, the merge button acts as an
"Apply" button itself. All geometry that is listed under "mergeable entities" will be merged.

R

The remove button is used to simplify geometry by removing unnecessary features. To use the remove feature, click on
the surface(s) in the Tree View. Right click and select the Remove Option, or click the Remove icon on the toolbar. The
Control Geometry-Surface-Modify control panel will appear, with the surface ids in the input window. The Remove control
panel can also be accessed from the right-click menu in the Geometry Power Tools window. Select options and press
apply.

@Regularize Entity Button

The regularize button is used to remove unnecessary topology. Regularizing an entity will essentially undo an imprint
command.

g

The remove slivers button is used to remove surfaces with less than a specified surface area. When ACIS removes a
surface it extends the adjoining surfaces to fill the gap. If it is not possible to extend the surfaces or if the geometry is bad
the command will fail.

&

The auto clean button is used to perform automatic cleanup operations on selected geometry. These automatic cleanup
operations include forcing sweepable configurations, automatically removing small curves, automatically removing small
surfaces, and automatically splitting surfaces.

o
ﬂComposite Button

The composite button is used to combine adjacent surfaces or curves together using virtual geometry . Virtual geometry is
a geometry module built on top of the ACIS representation. Surfaces may be composited to simplify geometry in order to
facilitate sweeping and mapping algorithms by removing constraints on node placement. It is important to note that solid
model operations such as webcut, imprint, or booleans, cannot be applied to models that have virtual geometry. Both
curves and surfaces may be composited.

‘ﬂ Collapse Angle Button

The collapse angle button uses virtual geometry to collapse small angles. This is accomplished by partitioning and
compositing surfaces in a way so that the small angle gets merged into a larger angle. Pressing the collapse button on the
geometry power tools will open the collapse menu under Geometry-Vertex-Modify control panel. This panel can also be
opened by selecting Collapse from the right click menu in the Geometry Tools window.

A

Pressing this button will open the collapse surface panel on the main control panel. The collapse surface function uses
virtual geometry to eliminate small surfaces on the model to improve mesh quality. It is most useful for blend surfaces.

)

Pressing this button will open the collapse curve panel on the main control panel. The collapse curve command is used to
eliminate small curves using virtual geometry.

Remove Button

Remove Slivers

Auto Clean Geometry

Collapse Surface Button

Collapse Curve Button

55

Cubit 12.1 User Documentation

=

Reset Graphics Button

The reset graphics button will refresh the graphics window display.

Right Click Menu

The following right click menu is available from the geometry power tools. Specific options depend on the type of entity
selected.

. Zoom To- Zoom to selected entity in the graphics window

. Reset Zoom - Reset graphics window zoom

° Fly-in - Animated zoom

. Locate - Labels the selected entities in the graphics window. Refresh screen to hide.
. Draw - Displays only selected entities by themselves.

. Highlight - Highlights selected entities.

. Draw with Neighbors - Displays only selected entities with all attached neighbors
° Clear Highlights - Clears all highlighted entities and reset graphics

. Reset Graphics - Reset graphics window

. Tweak - Opens the tweak menu in the main control panel

. Remove - Opens the remove menu in the main control panel

. Remove Slivers - Opens the remove sliver menu in the main control panel

. Remove all - Available when the clicking on an item in the "small surfaces" list. Opens the remove menu in the
main control panel with all surfaces in the category as inputs. The individual option will be selected on the panel
by default.

. Split - Opens the split surface or split curve menu in the main control panel, depending on the type of entity
selected.

* Auto Clean - Opens the auto clean menu in the main control panel.

. Regularize - Issues the regularize command on selected entity.

. Merge Selected - Merge selected entity from mergeable entities list

. Merge All - Merge all entities listed in the mergeable entities list

* (Virtual) Composite - Opens the composite menu in the main control panel

* (Virtual) Collapse - Opens the collapse angle menu the main control panel

. Collapse Surface (Virtual) - Opens the collapse surface menu on the main control panel

The following right click options are available when category headings are selected.

. Analyze Geometry - Similar to pushing the Analyze button.
. Highlight All - Highlight all members of this category.

. Draw All - Display only members of this category.

. Locate All - Label all members of this category.

56

mCubit 12.1 User Documentation

Meshing Tools

The meshing power tool provides a tool for determining whether a geometry can be meshed using autoscheme, or if it
requires its scheme to be set explicitly. This tool is designed to help guide users through geometry decomposition process
by providing a convenient way to see which geometries need further modification or decomposition prior to meshing.

Figure 1. Meshing Power Tools
Entity Specification- The meshing power tool works for volumes or surfaces.

Options Button - Opens the Tools>Options dialog to change the visualization colors of surface schemes for the
meshing tool

Analyze Button - The Analyze button issues the autoscheme command for all selected volumes and surfaces.

Output Tree - The output from the meshing tool is displayed in tree format. Geometry is divided into "Scheme Set" and
"Scheme Not Set" divisions. The geometry is listed under these nodes. If autoscheme was successful, its assigned
scheme is also displayed.

Toggle Visibility Button - The meshing tool displays entities as red or green in the graphics window. Green means that
they are currently meshable using the autoscheme. Red means that they require their scheme to be set explicitly. Turning
this capability off will return the volumes and surfaces to their original colors.

Meshing Tools Buttons - Several meshing tools are available to the user from this window. Depending on the entity
selected, these are also available from the right-click context menu, and they are described below.

Right Click Context Menu

. Zoom To - Zoom in on this element in the graphics window

. Draw - Draw this entity by itself in the graphics window

. Locate - Locates and labels entity in the graphics window

. Rotate About - Issues Rotate about command for selected entity
* Visibility On/Off - Toggle visibility

. Reset Graphics- Reset graphics display

. Set Size - Opens the Mesh/Entity/Interval panel on the control panel where you can set interval sizes for the
selected geometry

. Set Scheme - Opens the Mesh/Entity/Mesh panel on the control panel where you can set a scheme for the
selected entities

. Set Vertex Type - Available when surfaces are selected. Opens the Mesh/Surface/Mesh panel to set vertex
types.

. Imprint/Merge- Opens the Geometry/Entity/Merge panel on the control panel. If you have entities selected in
the tree window it will input them to the imprint/merge command.

° Webcut - Opens the Geometry/Volume/Webcut panel on the control panel. If a volume is selected in the
meshing tool window it will input it in the webcut panel.

* Color Surfaces - Color surfaces based on their schemes. You can change the default colors by selecting the
Options button.

. Restore Colors - Restores colors on selected entity or entity type

. Mesh - Meshes the selected entities (bypassing control panel)

o Delete Mesh - Deletes the mesh on selected entities

. Unmerge - Unmerges selected entities

¢ View Descendants - Opens a list of child entities and their meshing schemes. Press Analyze to return.
. View Ancestors- Opens a list of parent entities and their meshing schemes. Press Analyze to return.

57

Cubit 12.1 User Documentation

. View Neighbors- Opens a list of bordering entities and their meshing schemes. Press Analyze to return.

58

mCubit 12.1 User Documentation

Mesh Quality Tools

The mesh quality tool is located in the entity tree window under the quality tab. The Mesh Quality Tool works on meshed
entities to analyze mesh quality based on selected metrics. Output from the mesh quality analysis can be visualized using
color-coded scales. The mesh quality tool also contains tools to improve mesh quality including smoothing, refinement,
node merging, mesh validation, deleting mesh elements, and repositioning nodes.

|| @ 2|y
&@ | Volume +| |all

@ Elptin:nns| izual | Analyze |

Foor Elements

Results | Quality l
=5hape
Mo bad elements found

5 | PN 2|

2
[]| X,

Figure 1. Mesh Quality Tools

Entity Type - The mesh quality tools can only be applied to mesh entities including volumes, surfaces, hexahedra,
quadrilaterals, triangles, or tetrahedra.

Help Button - Opens context specific help for this topic.

Options Button - Clicking on this button will show the Tools>Option menu dialog that allows users to manually enter
metric range settings. The settings are persistent between sessions. For a description of quality metrics and default
ranges click on one of the following links:

. Metrics for Hexahedral Elements
. Metrics for Quadrilateral Elements
. Metrics for Tetrahedral Elements
. Metrics for Triangular Elements

59

Cubit 12.1 User Documentation

Visual Button - Clicking on this button will open the Mesh/Entity/Quality command panel specific to the entity selected.
To visualize elements in the graphics window based on a color-coded quality scale, you must select the entities to
visualize and check the "Display Graphical Summary" check box. Once that box is selected, you must also make sure the
"Draw Mesh Elements" option is selected. Then press the Apply button

Analyze Button - This button starts the quality processing based on the metrics/filters selected.

Output Window/Tree - The failed elements are shown in the tree under the heading "Poor Elements". For each
metric/filter the output will be listed in a tree format with the following nodes.

The top node on the tree is the name of the metric.
The next node under is the owning volume or surface when volumes or surfaces are analyzed.
The next node will be categories or groups of elements. Possible categories are:
O All Above Threshold - represents all mesh elements above the quality threshold upper range
O All Below Threshold - represents all mesh elements below the quality threshold lower range
o Top "n" - This will expand into a list, up to 50 elements long, of the worst offending elements above
the upper threshold range.
O Bottom "n" - This will expand into a list, up to 50 elements long, of the worst offending elements below
the lower threshold range.
4. Atthe lowest level of the tree are mesh elements.

wn =

The mesh elements can be sorted by quality or by numeric order. To change the way items are sorted, click on the
headings. The right-click or context menu will show various remedies depending on what is selected. Performing an
operation on a parent node will perform the same operation on all of the child nodes.

Mesh Quality Tool Buttons

The buttons on the bottom of the mesh quality tool window are some of the tools you may use to improve mesh quality
and include.

. Smooth Button - Opens the Mesh>Entity>Smooth panel

. Refine Button - Opens the Mesh>Entity>Refine panel

o Move Node - Opens the Mesh>Node>Move Node panel

. Merge Node - Opens the Mesh>Node>Merge Node panel

° Delete Mesh Element - Deletes selected mesh entity

. Validate Mesh - Issues the validate mesh command

. Check Coincident Nodes - Issues the check coincident nodes command.
* Refresh Graphics

Right-Click Context Menu Items

. Draw - issues a draw command for any tree node below the metric name.
. Color Code - Issues a 'quality draw mesh' command for any tree node below the metric name

° Locate - Issues Locate for volume/surface/hex/quad/tet/tri. The locate command will draw and label selected
entities in the graphics window.

. Fly-In - Issues Fly-in for volume/surface/hex/quad/tet/tri. The fly-in command is an animated zoom feature.
. Zoom to - Issues Zoom command for volume/surface/hex/quad/tet/tri

. Rotate About - Issues Rotate About command for volume/surface/hex/quad/tet/tri

* Vis on/off - Issues visibility on/off for volume/surface

* Smooth - Issues generic smooth command for volume/surface/hex/tet

. Smooth Surface Parent - issues a smooth surface command for the surface parents of selected quads and
tris.

. Delete Mesh - issues delete mesh propagate command for vol/surf
o Delete Elements - issues delete element command for mesh entities in all categories except 'all'
. Validate mesh - validates selected volume or surface

. Check Coincident Nodes - checks for coincident nodes on volume or surface
* Smooth Panel - brings up the correct smooth panel depending on what's selected

60

Mesh Quality Tools

Smooth Surface Panel - bring up the smooth surface panel with correct surface ids for selected quads and tris
Merge Node Panel - brings up the panel to merge nodes

Move Node Panel - brings up the panel to move nodes

Reset Graphics - resets the display

61

‘Cubit 12.1 User Documentation

Property Editor

The Property Editor is a window that lists properties about the current entity selection. Some of the properties, like CUBIT
ID, entity type, or geometry engine, are listed for reference only. Other attributes, like name, or mesh intervals, color,
mesh scheme, or smooth scheme can be edited from the window. The Property Editor is located on the left panel in the
GUI. The highlighted entity/entities in the graphics window are listed in the property editor window. The Property Editor
also lists information about selected mesh entities, boundary conditions, and assemblies. Selecting an object from the

Tree View will also open the object in the property editor.

Coplay Todks el

DN NEHN PP 9999030 2AQ9HEDDY
LOw

si@8 ABNEDY » +-nage DHE s0ep /-

Tooks R
w

I WL ERENES
it Vi [Full Bew v.

N w -m:
T2 dssertie:

h! Boundary Corelbion
5 G
o Matrial
&

P_fn'perties Paq@

|
[Propertic: Page ax

Par i Aty

LRI [EIEIES

Progasty ke [huto
e

Tt
Naa [votrs | il

e - | =
E] Geomry

Garsaratad 1900 hexes for Veluss 1 (Volwsas 1). B
e Mo b Volums | (Walums 1} sssbing coagletsd wiing scheas

Bigrveas of S 13 doarnaled Cosmmand: merh volums .

Currsas sacicy iv Voluss I,
CUBETe ¥

_Comnara i Emor [Hstory [

i
]

Ergre AT Conmard line @ x| “ument Siwc 09607
ki Lokt
Gamarstad 100 facmn for Burfsss & (Surfsce &) Al ek Far Owerlaging Surfsoes

o]

Working Biractory: - Program FledjCUELT 11 2 |

Figure 1. Property Editor Window

The row of buttons on the top of the editor are shortcuts to common commands. These include:

>

hl Meshes the selected entity/entities at their current interval and scheme settings

p| Smooth selected entity using the current smoothing scheme

Preview mesh intervals on selected entity

62

Property Editor

& B

[E

R

Delete mesh on specified entity (do not propagate to lower order entities)

Reset entity to default settings and delete mesh

Calculates volumes and surface areas

Delete current entity

Editing Entity Attributes from the Property Editor

The Property Editor provides a convenient way to change attributes on entities. . Some of the fields cannot be changed,
some can be edited from an input field, and others are edited by selecting from a list, or by opening the corresponding
window from the Control Panel.

If multiple entities are selected, the attributes that are similar to both entities will be shown. Changing an attribute from the
property editor will change that attribute on both entities. If multiple entities are selected the total volume, surface area,
and length of all entities will be shown.

Below is a summary of properties listed for each attribute type.

General Attributes

Entity ID - CUBIT ID for geometry or boundary condition element

Entity Type - Geometric type such as Volume, Surface, Curve, Vertex

Name - Name by which the entity can be referred to from within CUBIT instead of using its ID. The entity name
can be edited from this window.

Color - Opens a dialog box with available colors. A color name can also be input directly into the text field. See
Appendix for a list of available colors.

Geometry Attributes

Is Merged - Returns "Yes" if this entity is merged

Is Virtual - Returns "Yes" if this entity is a virtual entity

Location - Returns the location of specified vertex.

Geometry Engine - ACIS, Granite or Mesh-Based Geometry

Volume - The volume of the specified body

Surface Area - Surface area of selected surface

Analytic Type - Returns the analytic type of entity (such as cone, sphere, etc)
Length - Length of selected curve

Meshing Attributes

Is Meshed - Returns "Yes" if the entity is already meshed

Number of Elements - Similar to "List Totals" command

Intervals - Number of mesh intervals on element. This can be edited from this window. The number must be an
integer

Interval Size - Interval size for element. Clicking on box will open the interval specification panel on the control
panel. The interval size can also be entered manually in the text box.

Meshed Volume - The meshed volume may be slightly different than the actual element volume due to the
mesh approximation on curved surfaces.

63

Cubit 12.1 User Documentation

Meshed Area - The meshed area may be slightly different than the actual surface area due to mesh
approximation on curved edges.

Length of Meshed Edges - Combined total of mesh edge lengths on curve

Mesh Scheme - The mesh scheme for this entity. This can be changed from the property editor by selecting
from the drop-down list.

Smooth Scheme - The smooth scheme for this entity. This can be changed from the property editor by
selecting from the drop-down list.

Boundary Condition Attributes

ID - Boundary condition ID. This is an arbitrary user-defined ID that is exported with the finite element model.
This value can be edited from the property editor

Name - A user-defined name that is included in the metadata for that object. This value can be edited from the
property editor.

Description - A user-defined description that is included in the metadata for that object. This value can be
edited from the property editor.

Color - Opens a dialog box with available colors. A color name can also be input directly into the text field. See
Appendix for a list of available colors.

Element Type - The finite element type for this block, nodeset, or sideset.
Element Count - The total number of elements for this block or sideset
Node Count - Total number of nodes (available for nodesets only)

Attribute Count and Attributes- The attributes represent material specification data that is associated with the
element block. These values can be changed in the property editor. You can specify up to 10 attributes per
block.

Metadata Attributes

Type - The metadata type: Assembly, Sub-Assembly or Part

Name - The name for the assembly or part. This can be edited from the property window.
Instance - The numeric value associated with the part or assembly

Path - The absolute path of the part or assembly.

Description - The description of the part or assembly. This can be edited from the property editor

Material Description - The name or description of the material of which this part is composed. Applies only to
parts. This can be edited from the property window.

Material Specification - The formal specification number of the material of which this part is composed. This
can be edited from the property window.

File Format - The name of the file system containing the original version of this entity. This can be edited from
the property editor

Units - The unit system of this part or assembly. This can be edited from the property editor

The part name, description and material description are available when the associated volume is selected, and not just
when the part is selected.

64

Cubit 12.1 User Documentation

Command Line Workspace

CUEBIT+ br = 10 ﬂ
Successfully created brick wolume 1

Journaled Command: brick x 10

CUBIT= z‘

Y Command A 4, Emor A History

The Command Line Workspace is the interface for command interaction between the user and the CUBIT application.
The user can enter commands into this window as if they were using the command line version of CUBIT. Journaled
commands will be echoed to this screen, even if they were not typed in manually. Thus, if the user wants to know what the
command sequence for a particular action on the GUI is, they can watch for the "Journaled Command:" line to appear. In
addition, this screen will contain important informational and error messages. The command window has the following four
tabs:

Command
Error
History
Script

rON=

The Script window is hidden by default. To turn it on open the Tools-Options dialog and check the "Show Script Tab under
Layout/Cubit Layout.

Command Window

The command line workspace emulates the environment in the command line version of Cubit. Commands can be
entered directly by typing at the CUBIT> prompt. This window also prints out error messages, informational messages,
and journaled commands.

Entering Commands

To enter commands in the command line workspace, the command window must be active. Activate the command
window by clicking anywhere inside the window. Commands are typed in at the CUBIT> prompt. If you do not remember
the specific command sequence you can type help and the name of the command phrase. The input window will show all
of the commands that contain that word or phrase. Alternatively, if you know how a command starts, but do not remember
all of the options, you can type ? at the end of the command to show all possible command completions. See Command
Syntax for an explanation of command syntax rules.

Repeating Commands
Use the Up and Down arrow keys on the keyboard to recall previously executed commands.

Commands can be repeated in other ways as well.

° Hitting the enter key while the cursor is on a previous command line will copy that command to the current
prompt.

. The command window supports copy and paste for repeating commands.

65

Cubit 12.1 User Documentation

Interrupting Running Tasks

Many commands can be interrupted in the middle of execution. The GUI has a cancel button that can be used to interrupt
the current command. The cancel button will turn red when a command can be interrupted. The cancel button has an 'x'
on it, and is located on the status bar, which is at the bottom of the application.

Error Window

The error window is located in the Command Line Workspace under the Error tab. If there are errors, a warning icon will
appear on the tab. The icon will disappear when you open the window to view errors. The error window only displays the
error output, which can make it easier to find and read the error output. The command that caused the error will be printed
along with the error information. If the command was from a journal file, the file name and number will be printed next to
the command.

History Window

The history window lists the last 100 commands. The number of commands listed can be configured in the options dialog
on the History page. You can re-run the commands in the history window using the context menu. You can also clear the
history using the context menu.

Script Window

CUBIT boasts a robust Python interpreter built right into the graphical user interface. To create a Python script using the
Script tab, start typing at the "%>" prompt. At the end of each line, hit Enter to move to the next line . To execute the
script, press Enter at a blank line. Scripts may also be written in the Journal File Editor.

The Claro Python interpreter works as though you were entering lines from the Python command prompt. This means that
a blank line is interpreted as the end of a block. If you want to add whitespace for clarity you have to add a # mark for a
comment on any white line that is in a loop or a class.

One possible solution to this problem is to create two Python files. The first file can contain the complex set of Python
instructions(program.py) including blank lines. The second file will read and execute the first file. An example syntax for
the second file is given below.

f = file("program.py")
commandText = f.read()
exec(commandText)

You can then execute the second program within Cubit.

The interface between cubit and python is the "cubit" object. This object has a method called emd which takes as an
argument a command string. Thus, the following command in the script window:

cubit.cmd("create brick x 10")

will create a cube with sides 10 units long. The following script is a simple example that illustrates using loops, strings,
and integers in Python.

%>for i in range(4):
.. X=i*3
.. forjinrange(4):
y=j*3
for k in range(4):
z=k*3
mystr="create vertex x "+str(x)+" y "+str(y)+" z "+str(z)
cubit.cmd(mystr)

This simple script will create a grid of vertices four wide. Scripts can be more advanced, even creating customized
windows and toolbars. For a complete list of python/cubit interface commands see the Appendix.

66

Command Line Workspace

Docking and Undocking the Input Window

The command window can be undocked by clicking and dragging the left edge. If it is floating it can be redocked by
double-clicking the solid blue bar. By default, it will always be redocked in the bottom of the application window. To
change the size of the floating window, click and drag the edge of the window. To change the height of the docked

window, click and drag the top edge or right edge.

67

a1m1Cubit 12.1 User Documentation

Journal File Editor

The Journal File Editor is a built-in, multi-document text editor that can read, edit, play, and translate CUBIT journal files

and Python Scripts. To open the journal file editor, select the E icon on the File Tools toolbar, or from the Tools
Menu.

& Journal Editor O ~=10f x|

File Edit Tools

IFEFELEEINI
Untitled: |

4

Figure 1. The Journal File Editor

The Journal File Editor can be used to create a new Python or Cubit command script. By default, a new journal file will be
in Cubit command syntax. You can change the default in the options dialog. On the "General" options page, under the
Journal Editor heading, you can select the default syntax. You can change the new journal file's syntax using the
translation buttons as well. When you have the correct syntax selected, enter the commands in the order you want them
executed. You can play the commands all at once using the play button on the toolbar. You can also play a few
commands at a time. Select the commands you want to play. Then, right click and select the "Play Selected" menu item.

The Journal File Editor can also be used to edit an existing journal file. Use the File > Open menu item to open the file you
want to edit. You still have all the command play options with an existing journal file.

You can import commands entered in the Command Line Workspace. The File > Import menu item contains a list of
available imports. Select the tab you want to import from. Only the current commands will be imported from the command
line. Some of the commands you previously entered might not show up if you have the recommended text trimming turned
on. Text timming improves the application's performance for speed and memory. It will trim off the oldest text in the
window when a size limit is reached. To get all the command from your current session, make sure that command
journaling is turned on.

The Journal File Editor can be used to edit Python or Cubit command scripts. It can also translate between the two forms.
Translating from Python to Cubit commands can cause commands to be lost. The Journal File Editor will warn you when
doing so.

68

Journal File Editor

The Journal File editor can be used to edit multiple files at the same time. Each document is displayed in its own tab. The
tab shows the journal file's syntax and name. If you close the Journal File Editor with unsaved data, it will prompt you to
save changes for each of the modified journal files you have open.

Journal Editor Toolbar

The Journal Editor's Toolbar provides quick access to several important functions.
ERIEIY L dnlill 2%

. New - Creates a new journal file. The new journal file is placed in a new tab.
. Open - Used to select a journal file to open.
. Save - Saves the current journal file.

. Undo - Undo the last text change.

. Redo - Redo the last text change, after Undo.

. Cut - Standard text cut operation

. Copy - Standard text copy operation

. Paste - Standard text paste operation

° Play Journal File - Plays the entire journal file

. Translate to Python - Translates the current Cubit commands in the journal file to Python scripts.
. Translate to Cubit - Translates the current Python script in the journal file to Cubit commands.

69

»
mCubit 12.1 User Documentation

Toolbars

The CUBIT toolbars provide an effective way for accessing frequently used commands.

Below is a brief description of each of the available toolbars. To view a description of the function of each tool, hold the
mouse over the tool in the CUBIT Application to display tool tips.

File

Provides CUBIT (*.cub) file operations. This toolbar also includes Journal File operations.

Save - Stare Play Journal
current model File - Choose a
Mew - Deleta and settings to CUBIT journal
current model @ CUBIT {.cub) file to play Pause Journal
and start over database file File - Pause
execution of a
\ \ currently running
-~ CUBIT journal
™ S| N B b8 g
Open - Read a” Jaurnal Editn:nr/- Flay ID-less
CUBIT (.CLll:ljl Bring up interactive Journal File -
database file tewt editar for Choose an

running and editing 1D-less CUBIT
CUBIT journal files journal file to play

Figure 1. File Toolbar

Display

Controls the display mode, checkpoint undo, zoom, perspective clipping plane, and curve valence display options in the
Graphics Window.

70

Toolbars

) Showy
IUndo Last Togale Perspectve Curve
Tumn oy CREration Display Made Valence
“hetkpaint / Display G2omelry Zoom L(nells
i u up Mnde Entities Display In Zoom Clipping
e J,r esh \\ out Plane
B ! \

@@@WWWW@%@MW@E@@Z
Wweframe/ Transparent / \ N

Togole
Moot Made Show Rediaw Janie; Clipping
Dotted Composites the Blans
Hidden Dizplay . .
Line Hidden Solid Smooth ngglle hanipulation
Maode Line Shading cale
hode Mode

Figure 2. Display Toolbar

Select

Controls the Entity Selection Mode for picking or selecting entities. Also controls options for box/polygon selection.

Togole
Select Selected Togole
Groups Enclogeds Between
of Select Geametry Select Mesh Extended Folygon/

Entmea/ Erfities ~_ - Entifies —____ N, EquSeIect
aﬁﬁp/wwﬂmﬁxﬂﬁm

-
‘Bodies Uemces Guad Eelect
“-Ra
YVolumes CURES Element Elements Elementa W

odes b OFFaces
Surfaces Elerment Triangle Elements
Edges Elements
orFaces
Select Select Select
Select Select Selact Inlet Mass Inlet Fairfield Select

Forces Heatfluxes Temperatures Flnv{s Yelocities Pressures Symmetries
™

Hep=s [R AHAE RS B
//|\\\

Select _ Select Select Select Select Select
Pressures Displacements Convections Inlet Ciutlet Feriodics
Fressures Pressures

Figure 3. Select Toolbars

71

Cubit 12.1 User Documentation

72

mCubit 12.1 User Documentation

Options Menu

To change program preferences in the Graphical User Interface select: Tools > Options . The options menu includes:

. Custom Tools

. Display
¢ General

. Geometry Defaults
. History and Cubit Journalling
. Label Defaults

. Layout
. Mesh Defaults

. Mouse Settings
. Post Processor

. Quality Defaults

Note: Mac users reach this dialog box by selecting the Cubit > Preferences menu.

Custom Tools

This menu controls the creation of Custom Toolbar buttons.

Display Preferences

This menu controls entity display features for the graphics window which include the following:

. Display Triad in Graphics Window

. Enable Pre-Selection

* Background Color

* Perspective Angle

¢ Line Width

. Highlight Line Width
. Text Size

. Ambient Intensity

¢ Ambient Color

. Light Intensity

. Light Color

General Preferences

This menu controls general program options including the following:

o Prompt for Unsaved Application Data - When this is checked and the user opens a new .cub file or exits the

application with unsaved changes, a dialog box will pop up asking if they want to save changes first. The user
can uncheck this option to prevent that dialog box from appearing. This is checked by default.

73

Cubit 12.1 User Documentation

. Prompt for Unsaved Journal Data - When this button is checked and the user closes the journal file editor
with unsaved changes the program will prompt to save the changes. The user can uncheck this button to
prevent the dialog box from appearing. It is checked by default.

* Change to Script Directory for Playback - When this option is checked, Claro will change the working
directory to the directory the script is in when the script/journal file is run. When the script is finished, Claro will
change the directory back to the previous one. This is useful when using relative paths in a journal file. When
the option is unchecked, Claro won't change the directory when a journal file is run in which case the user may
have to manually change the working directory when their journal file has relative paths.

. Prompt When Translating from Python - When checked, if the user translates a python script to a cubit
journal file, the journal editor will warn them that commands may be lost. When unchecked, the journal editor
will not issue the warning. There is a checkbox on the warning dialog that sets this option as well.

. Default Syntax - Sets the default syntax to use when creating a new journal file in the editor. The Cubit option
is only available when the cubit component is loaded.

. Show Startup Splash Screen - Option to hide the startup splash screen on opening Claro.
Geometry Defaults
This menu controls the geometry defaults.

¢ Vertex Size

. Use Silhouette on Geometry
. Silhouette pattern

The user can also change the default geometry engine to one of the following:

o
>

CIS
. Facets

. Pro Engineer/Granite

The faceting tolerance can also be controlled from this menu to change the way facets are drawn in the graphics window.

History Preferences

This menu controls the input window history and journal file options. These include:

. Maximum Number of Commands - The max number of commands kept in the current command history.
. Comment Line Filtering - Whether to count comments in command history.
. Maximum Number of Lines - Maximum number of lines in input window.

° Journal Command History - Whether to use a journal file to save command history. Default is to use a journal
file.

* Journal File Directory - Where the journal file will be saved. Default is the starting directory.

* Journal File Name - The name of the journal file. A name will be given by default if one is not specified. The
default name for the GUI version of cubit is historyxx.jou with xx as the highest used number between 01 and
999 incremented by 1.

Cubit History Preferences

. Use Cubit Journaling - When this option is checked, Cubit journaling will be used. By default it is checked.
. Output Log - When this option is checked, you can save error log to a separate output file.

Label Defaults

This menu controls the geometry and mesh entity labels in the graphics window.

. Text Size

74

Options Menu

o Label Geometry and Mesh Entities Toggles- Choose label visibility for each type of geometry or mesh entity

Layout Preferences

This menu option controls input window formatting and control panel docking options.

. Font for command line workspace
. Font size for command line workspace
. Reset Window Layout Button - Used to reset GUI windows to their default positions

Also included in the layout preferences is a list of available windows with a checkbox to show/hide each window.

Cubit Layout Settings

This menu controls the layout of Cubit specific buttons and tabs on the GUI.

. Show script tab - Shows the script tab on the command line window
* Use Labels on Buttons- Option to apply a label to each button on the control panel
. Preferred Location (currently under construction)

Mesh Defaults

. Node Size

. Element Shrink

. Mesh Line Color - The same as "Color Lines" command.
. Default Element Type - Tet/Tri or Hex/Quad

* Surface Scheme Coloring (used in Meshing Power Tool) - This option allows you to select different colors for
surface schemes when visualized using the meshing power tools.

Mouse Settings

This menu controls mouse button controls. Pressing the Emulate Command Line Settings button will cause all of the
settings to simulate mouse controls in the command line version of CUBIT. For a detailed description of mouse settings

see the View Navigation-GUI page.

Post Processor Settings

Post Processor Executable Directory - Option to browse for post processor executable directory.

Quality Defaults

This menu controls quality defaults for different quality metrics. For a description of the different quality metrics see the
respective pages:

. Hexahedral metrics
* Quadrilateral metrics
. Tetrahedral metrics

. Triangular metrics

75

a1mICubit 12.1 User Documentation

Creating Custom Toolbar Buttons

If you have a string of commands that you use frequently, it can be beneficial to make a custom toolbar button. To create
a custom toolbar button open the Tools->Options menu. You can create up to 10 custom buttons. See Figure 1 for an

example toolbar button.

= Cugtom T oolz
= Digplay

= General

- [eometry Defaulks
[+~ Hiztamny

- Label D efaults

[+]- Layout

-~ begh Defaults

= hougze

- Pogt Processor

- [Juality Defaults

Button Two
[v Enabled

Tool Tip |Ereate a perforated brick. and mesh

Fixrnap d% ||:|efault image

Cubit Commandz

Browse ..

brick = 10

cylinder radiuz 3212
zubtract valume 2 from volume 1

meszh vol 1

Save

Cloze

Figure 1. Making a custom toolbar button to create and mesh a perforated brick

The button can have Python or Cubit commands. These commands will be executed in consecutive order when the button
is pushed. You must click the Enabled check box to activate your custom button.

You can assign a pixmap to your custom buttons or use the default. You can also assign a tool tip.

The buttons are persistent from each run of cubit. To remove a button, uncheck the Enabled button.

76

mCubit 12.1 User Documentation

Undo Button

Cubit has an undo capability. To enable the Undo feature click on the "Enable Undo" button on the Toolbar.

@ Enable Undo Button

Alternatively to turn undo on and off, the following command may be used in the command line:
undo {on|off}

The Undo capability is implemented for geometry commands including webcutting, geometry creation, transformations,
and booleans. Multiple undos are also allowed. The commands will be undone in reverse order of their execution.

Limitations

. The undo button is not currently enabled for most meshing commands

77

mCubit 12.1 User Documentation

Journal File Creation and Playback

Recording a Session

Command sequences can be written to a text file, either directly from CUBIT or using a text editor. CUBIT commands can
be read directly from a file at any time during CUBIT execution, or can be used to run CUBIT in batch mode. To begin and
end writing commands to a file from within CUBIT, use the command

Record '<filename>'

Record Stop

Once initiated, all commands are copied to this file after their successful execution in CUBIT.

Replaying a Session
To replay a journal file, issue the command
Playback '<filename>'

Journal files are most commonly created by recording commands from an interactive CUBIT session, but can also be
created using automatic journaling or even by editing an ASCI| text file.

Commands being read from a file can represent either the entire set of commands for a particular session, or can
represent a subset of commands the user wishes to execute repeatedly.

Two other commands are useful for controlling playback of CUBIT commands from journal files. Playback from a journal
file can be terminated by placing the Stop command after the last command to be executed; this causes CUBIT to stop
reading commands from the current journal file. Playback can be paused using the Pause command; the user is prompted
to hit a key, after which playback is resumed.

Journal files are most useful for running CUBIT in batch mode, often in combination with the parameterization available
through the APREPRO capability in CUBIT. Journal files are also useful when a new finite element model is being built, by
saving a set of initialization commands then iteratively testing different meshing strategies after playing that initialization
file.

78

mCubit 12.1 User Documentation

Controlling Playback of Journal Files

The following commands control the playback of Journal Files:

Stop

Pause

Sleep <duration_in_seconds>

Resume [<n>]

Where

Next [<n>]

The playback of a journal file can be interrupted in three ways. Pressing ctrl-c while the journal file is playing will halt
playback of the journal file. (This only works in the command line version of CUBIT. See Interrupting Running Tasks for

more information). Alternately, if the stop or pause commands are encountered in the journal file and CUBIT is reading
commands from a terminal (as opposed to a redirected file), playback of the journal file will halt after that command.

The sleep command pauses execution for the specified number of seconds. It can be used to build a delay into journal
files during presentations.

In the command line version of CUBIT you can resume playback of a journal file with the resume command. If playback
was interrupted because ctrl-c was pressed, it will resume at the next command after the one that was interrupted. If
playback stopped because of a stop or pause command in the journal file, it will resume at the next line after the stop or
pause command. If the file was paused because of a sleep command in the file, it will resume automatically after the
specified duration.

If journal files that are playing back contain playback commands themselves, there may be multiple current journal files.
The where lists all current journal files and where the journal files have paused. Each line contains the stack position (a
number), the filename and the current line in the file. Unless CUBIT is running in batch mode, the first line is always
<stdin>. This just means that CUBIT will return to the command prompt after the top-most journal file has completed.

The remaining portion of any active journal file may be skipped by specifying the stack position (first number on each line
of the output from the where command) of the file where you want to resume. Any remaining commands in active journal
files with lower stack positions will be skipped.

The next command steps through interrupted journal files line-by-line. The argument to the next command is the number
of lines to read before halting playback again. If no number is specified, the command will advance one line.

Journal playback can also be set to stop automatically when it encounters an error during playback. The command syntax
is:

Set Stop Error {On|OFF}

Setting the stop error to "on" will cause the file to halt for each error. The setting is turned off by default.

79

mCubit 12.1 User Documentation

Automatic Journal File Creation

Controlling Automatic Journal File Creation

By default, CUBIT automatically creates a journal file each time it is executed. The file is created in the current directory,
and its name begins with the word "cubit " or "history", depending on the version of CUBIT, followed by a number starting
with cubit01.jou and continuing up to a maximum of cubit999.jou. It is recommended that the user keep no more than
around 100 journal files in any directory, to avoid using up disk space and causing confusion. To that end, when the
journal name increments to more than cubit99.jou, a warning will be given on startup telling the user that there are at least
99 journal files, and to please clean out unused files. If the user has up through cubit999.jou, then the user is warned that
there are too many journal files in the current directory, and cubit999.jou will be re-used, destroying the previous contents.
When starting cubit, the choice of journal file name to be used depends on whether it is creating a historyXX.jou file, or a
cubitXX.jou file. For historyXX.jou files, it will look for the highest used number in the current directory and increment it by
one. For example, if there are already journal files with names history01.jou, history02.jou, and history04.jou, Cubit will
use history05.jou as the current journal file. For cubitXX.jou files, Cubit will fill in gaps, starting with the lowest number. For
example, if there are already journal files with names cubit01.jou, cubit02, jou, and cubit04.jou, then Cubit will use
cubit03.jou as the current journal file.

Journal file names end with a ".jou" extension, though this is not strictly required for user-generated journal files. If no
journaling is desired, the user may start CUBIT with the -nojournal command line option or use the command :

[Set] Journal {Off | On}
Turning journaling back on resumes writing commands to the same journal file.

Most CUBIT commands entered during a session are journaled; the exceptions are commands that require interactive
input (such as Zoom Cursor), some graphics related commands, and the Playback command.

Recording Graphics Commands
All graphics related commands may be enabled or disabled with the command:
Journal Graphics {On | Off}

The default is Journal Graphics Off .

Recording Entity IDs and Names

When an entity is specified in a command using its name, the command may be journaled using the entity name, or by
using the corresponding entity type and id. The method used to journal commands using names is determined with the
command:

Journal Names {On | Off}

The default is Journal Names On .

If an entity is referred to using its entity type and id, the command will be journaled with the entity type and id, even if the
entity has been named.

Recording APREPRO Commands

APREPRO commands may be echoed to the journal file using the following command

[set] Journal [Graphics|Names|Aprepro|Errors] [on|off]

80

Automatic Journal File Creation

See APREPRO Journaling for more information.

Recording Errors

The default mode for CUBIT is to not journal any command that does not execute successfully. To turn this mode off and
echo all commands to the journal file, regardless of the success status, use the following command:

Journal Errors {On|OFF}

If a command did not execute successfully and the journal errors status is ON, then the unsuccessful command will be
written as a comment to the file. For example an unsuccessful command might look like the following in the journal file

create brick x 10 x 10z 10

Since CUBIT recognizes this as erroneous syntax, it will issue an error when the command is issued, but will still write the
command to the journal file as a comment, prefixing the command with "##".

This option may be useful when tracking or documenting program errors.

81

Idless Journal Files

Journal files can also be created without reference to entity IDs. The purpose of this command is to enable journal files
created in earlier versions of CUBIT to be played back in newer versions of CUBIT. Using the "IDless" method,
commands entered with an entity ID will be journaled with an alternative way of referring to the entity. Changes in CUBIT
or ACIS often lead to changes in entity IDs. For example, a webcut may result in volume 3 on the left and volume 4 on the
right. In another version of CUBIT, those entity IDs may be swapped (4 on the left and 3 on the right). Playing an IDless
journal file makes the actual ID of an entity irrelevant. The syntax for this command is:

[set] Journal IDless {on|off|reverse}

The on option will enable idless journaling, and commands will be journaled without entity IDs. For example, "mesh
volume 1" may be journaled as "mesh volume at 3.42 5.66 6.32 ordinal 2".

Selecting the off option will cause commands to be journaled in the traditional manner (i.e., as they are entered).

The reverse option allows you to convert idless journal files back into an ID-based journal file where the new journal file
will reflect current numbering standards for IDs.

If you issue the command Journal IDless without any additional options, then the current status of ID journaling is
printed. At startup, this should be "off".

The most likely scenario for converting older journal is to use the record command during playback. The following is an
example.

journal idless on

record "my idless.jou"
playback "my journal.jou"
record stop

journal idless off

To record an idless journal file back into an id-based journal file you might use the following sequence.

journal idless reverse
record "new_id based.jou"
playback "my idless.jou"
record stop

journal idless off

Note: IDless conversions of APREPRO expressions are partially supported.

When IDless mode is set to ON, APREPRO functions such as Vx(id), that take an ID as an argument, are converted to
use (x, Y, z, ord) as arguments such as Vx(x, y, z, ord), where (X, y, z) is the center point coordinates and ord is the
ordinal value. The ordinal values, 1..n, identifies each entity in a set of n entities that have a common center point. An
entity's ordinal value is based on its creation order with respect to the other entities within the same set.

When IDless mode is set to REVERSE (using the above example) Vx(x, y, z, ord) will be converted to Vx(id). Outside
these APREPRO functions, APREPRO expressions are not modified when converting a journal file to or from its IDless
form. Hence, expressions reduced to an entity ID, such as in the command "volume {x} size 10," are not modified.
Therefore, when moving a journal file from one version of CUBIT to another, it may be necessary to manually update IDs
in APREPRO expressions.

82

mCubit 12.1 User Documentation

Command Line View Navigation: Zoom, Pan and
Rotate

Commands used to affect camera position or other functions are listed below. All rotation, panning, and zooming
operations can include the Animation Steps qualifier, makes the image pass smoothly through the total transformation.
Animation also allows the user to see how a transformation command arrives at its destination by showing the
intermediate positions.

Rotation

Rotate <degrees> About [Screen | Camera | World] {X | Y | Z} [Animation Steps <number_steps>]

Rotate <degrees> About Curve <curve> [Animation Steps <number_steps>]

Rotate <degrees> About Vertex <vertex_1> Vertex <vertex_2> [Animation Steps <number_steps>]

Rotation of the view can be specified by an angle about an axis in model coordinates, about the camera's "At" point, or
about the camera itself. Additionally rotations can be specified about any general axis by specifying start and end points to
define the general vector. The right hand rule is used in all rotations.

Plain degree rotations are in the Screen coordinate system by default, which is centered on the camera's At point. The
Camera keyword causes the camera to rotate about itself (the camera's From point). The World keyword causes the

rotation to occur about the model's coordinate system. Rotations can also be performed about the line joining the two end
vertices of a curve in the model, or a line connecting two vertices in the model.

Panning

Pan [{Left|Right} <factor1>] [{Up|Down} <factor2>] [Screen | World] [Animation Steps <number_steps>]

Panning causes the camera to be moved up, down, left, or right. In terms of camera attributes, the From point and At
point are translated equal distances and directions, while the perspective angle and up vector remain unchanged. The
scene can also be panned by a factor of the graphics window size.

Screen and World indicate which coordinate system <factor> is in. If Screen is indicated (the default), <factor> is in

screen coordinates, in which the width of the screen is one unit. If World is indicated, <factor> is expressed in the model
units.

Zooming

Zoom Screen <factor> [Animation Steps <number_steps>]
Zoom <x_min> <y_min> <x_max> <y_max> [Animation Steps <number_steps>]

Zoom {Group | Body | Volume | Surface | Curve | Vertex | Hex | Tet | Face | Tri | Edge | Node} <id_range> [Animation
Steps <number_steps>] [Direction {options}]

Zoom Reset

Zoom Screen will move the camera <factor> times closer to its focal point. The result is that objects on the focal plane
will appear <factor> times larger.

Zooming on a specific portion of the screen is accomplished by specifying the zoom area in screen coordinates; for
example, Zoom 0 .25 .25 will zoom in on the bottom left quarter of the screen.

83

Cubit 12.1 User Documentation

Zooming on a particular entity in the model is accomplished by specifying the entity type and ID after entering Zoom. The
image will be adjusted to fit bounding box of the specified entity into the graphics window, and the specified entity will be
highlighted. You can specify a final direction to look at when zooming by using the direction option.

To center the view on all visible entities, use the Zoom Reset command.

84

mCubit 12.1 User Documentation

Mouse Based View Navigation: Zoom, Pan and
Rotate

The mouse can be used to navigate through the scene using various view transformations. These transformations are
accomplished by clicking a mouse button in the graphics window and dragging, sometimes while holding a modifier key
such as Shift or Control. When run with graphics on, CUBIT is always in mouse mode; that is, mouse-based
transformations are always available, without needing to enter a CUBIT command.

Mouse-based view transformations are accomplished by placing the pointer in the graphics window and then either
holding down a mouse button and dragging, or by clicking on a location in the graphics window. Some functions also

require one or more modifier keys to be held down; the modifier keys used in CUBIT are Shift and Control

. Each of the available view transformations has a default binding to a mouse button-modifier key combination. This
binding can be changed by the user if desired. Transformations and button mappings are summarized in the following
table.

Note: These settings are applicable only to the UNIX command line version of CUBIT. For a description of the Graphical
User Interface Mouse Operations see GUI View Navigation.

The bindings are based on the following mouse button definitions:

B? B3

B1

Figure 1. Default Mouse Function Mappings for the Command Line

Table 1. Mouse Function Bindings for Zoom, Pan, and Rotate

Function Description Binding
Rotate Rotates the scene about the camera axis. Dragging the mouse near

the center of the graphics window will rotate the camera's X- or Y-

axis; dragging near the edge of the window will rotate about the Z- B1

axis (i.e. about the camera's line of sight). Type a u in the graphics
window to see the dividing line between the two types of rotation.

Zoom Zooms the scene in or out by clicking the mouse in the graphics
window and dragging up or down. If the mouse has a wheel, the B2
wheel will also zoom.

Pan "Drags" the scene around with the mouse B3
Navigational Zooms the scene by moving both the camera and its focal point
Zoom forward. B2

85

Cubit 12.1 User Documentation

Telephoto

Zo0m Zooms the scene by decreasing the field of view. Bz
Pan Cursor Click on new center of view B3

Changing the View Transformation Button Bindings

The default mapping of functions to mouse buttons, described in the Default Mouse Function Mappings table above,
can be modified. There are two ways to assign a function to a button/modifier combination.

First, you can use the command
Mouse Function <function_id> Button <1|2|3> [Shift][Control]
Type Help Mouse Function to see a list of function IDs that may be used in this command.

Second, you can assign functions interactively. To do so, first put the pointer into a graphics window and then hit the F
key. On-screen instructions will lead you through the rest of the process.

Saving and Restoring Views

After performing view transformations, it may be useful to return to a previous view. A view is restored by setting the
graphics camera attributes to a given set of values. The following keys, pressed while the pointer is in the graphics
window, provide this capability:

V - Restores the view as it was the last time Display was entered.

F1 to F12 - These function keys represent 12 saved views. To save a view, hold down the Control key while pressing the
function key. To restore that view later, press the same function key without the Control key.

Note: In the Graphical User Interface version the F1, F2 and F3 keys are used as an alternate form of dynamic viewing,
therefore the ability to save views is not currently supported in the GUI.

You can also save a view by entering the command
View Save [Position <1-12>] [Window <window_id>]

The current view parameters will be stored in the specified position. If no position is specified, the view can be restored by
pressing V in the graphics window. If a position is specified, the view can be restored with the command

View Restore Position <1-12> [Window <window_id>]

These commands are useful in as entries in a .cubit startup file. For example, to always have F1 refer to a front view of
the model, the following commands could be entered into a .cubit file:

From 0 1
At0
Up010

Graphics Autocenter On

View Save Position 1

The first three commands set the orientation of the camera. The fourth command ensures that the model will be centered
each time the view is restored. The final command saves the view parameters in position 1. The view can be restored by
pressing F1 while the cursor is in a graphics window.

Additionally, you can change the 'gain' on the mouse movements by changing the mouse gain setting, via the command:

Mouse Gain <value>

where a value of 3 would be 3X as sensitive to mouse movements, and a value of 0.5 would be half as sensitive.

86

Mouse Based View Navigation: Zoom, Pan and Rotate

Set ReverseZoom {on|off}

Another user preference, the direction of 'zooming' obtained by using the mouse can be 'flipped', by toggling the
reversezoom setting.

87

mCubit 12.1 User Documentation

Updating the Display
Among the most common graphics-related commands is:
Display

This command clears all highlighting and temporary drawing, and then redraws the model according to the current
graphics settings. Two related commands are:

Graphics Flush

Graphics Clear

Graphics Flush redraws the graphics without clearing highlighting or temporary drawing. Graphics Flush is useful when
a previously executed command modified the graphics and didn't update the screen and the user wishes to update the
display. The Graphics Clear command clears the graphics window without redrawing the scene, leaving the window
blank.

NOTE: Although most changes to the model are immediately reflected in the graphics display, some are not (for graphics

efficiency). Typing Display will update the display after such commands. Ctrl-R will also update the display as long as the
mouse is in the graphics window.

Prevent Graphics From Updating

For especially large models, it may take excessively long to update the display after an action has been performed. To
prevent the graphics from automatically updating, use the following command:

Graphics Pause
This command prevents the graphics window from being updated until the next time the Display command is issued.

NOTE: The Plot command is synonymous to the Display command, and either can be used with identical results.

88

mCubit 12.1 User Documentation

Graphics Modes

By default, the scene is viewed as a wireframe model. That is, only curves and edges are drawn, and surfaces are
transparent. Surfaces can be drawn differently by changing the graphics mode:

Graphics Mode {Wireframe | Hiddenline | Smoothshade | Transparent | Truehiddenline } [Geometry | Mesh]

Examples and a brief description of each mode are shown below

WireFrame - Surfaces are invisible. (This mode can also be
accessed by typing 'wireframe' at the command prompt.)

HiddenLine - Surfaces are not drawn, but they obscure what is
behind them, giving a more realistic representation of the view. (This
mode can also be accessed by typing ‘hiddenline' at the command
prompt.)

SmoothShade - Surfaces are filled and shaded. Shaded colors are
interpolated across the entire surface using the graphics lighting
model. This produces the most realistic results. (This mode can also
be accessed by typing 'shaded' at the command prompt.)

89

Cubit 12.1 User Documentation

Transparent - Renders surfaces as semi-transparent shaded
images, allowing objects to shine-through from behind. Is not
supported on all platforms, and generally requires advanced
graphics hardware. (This mode can also be accessed by typing
'transparent’ at the command prompt.)

Truehiddenline - Similar to Hiddenline mode, but partly shows
obscured lines. TrueHiddenLine mode also gives you additional
options described below.

Truehiddenline Options

Graphics TrueHiddenLine Pattern <pattern>

This determines what pattern is used to draw lines behind surfaces (e.g. dotted, dashed, etc.; click here for a list of valid
line patterns).

Displaying Using the Element Facets

There is another option that is similar to a graphics mode, set with the command

Graphics Use Facets [On|Off]

This command determines how shaded and filled surfaces are drawn when they are meshed. If Graphics Use Facets is
on, the mesh facets (element faces) are used to render the model. This is particularly helpful for curved surfaces which
may cut through some of the mesh faces. A comparison of graphics facets on and off is shown below.

Figure 1. A meshed cylinder shown with graphics facets off (left) and graphics facets on (right); note how geometry facets
on the curved surface obscure mesh edges when facets are off.

Displaying Composite Surface Lines

Composite surfaces are surfaces that have been joined together using virtual geometry. By default, the underlying
surfaces are marked with dashed lines. To toggle this setting so that underlying surfaces are not shown, use the following

command:

90

Graphics Modes

Graphics Composite {On|Off}

(a) (b

Figure 2. A part shown with (a) composite surfaces displayed (b) composite surfaces not displayed

91

mCubit 12.1 User Documentation

Drawing and Highlighting Entities

In order to effectively visualize the model, it is often necessary to draw an entity by itself, or several entities as a group.
This is easily done with the command

Draw {Entity specification} [Color <color_spec>] [Zoom] [Add]

where Entity specification is an entity list as described in Command Line Entity Specification. This command clears the
display before drawing the specified entity or entities. Specification of a color will draw those entities in that color. This will
not permanently change the color of the entity. The zoom option will zoom in on the selected entities after drawing them in
the graphics window. If the add option is specified, the display is not cleared, and the given entity is added to what is
already drawn on the screen. The entities specified in this command are drawn regardless of their visibility setting (see
Geometry and Mesh Entity Visibility for more details about visibility).

Entities may also be drawn by selecting them with the mouse and then typing Ctrl-D while the mouse is in the graphics
window. This will clear the screen and then draw only those entities that are currently selected.

Entities can be highlighted using the command
Highlight {Entity specification}

This command highlights the specified entities in the current display with the current highlight color. Highlighting can be
removed using the command

Graphics Clear Highlight

To return to the normal display of the entire model, type Display.

The Locate command will label and point to the specified entity in the graphics window. The command syntax is:

Locate <entity_list>

Additionally, the visibility of individual entities, or sets of entities, can be controlled with the following visibility commands.
{Vertex|Curve|Surface|Volume|Body|Group} <range> [Geometry|Mesh] Visibility {on|off}

Edge [Visibility] {on|off}

{Mesh|Geometry} [Visibility]{on|off}

Drawing Other Objects
In addition to the common geometry, mesh and genesis entities, other objects may be drawn with variations of the Draw

command. As with the other Draw commands, typing Display after drawing these objects will restore the scene to its
normal display.

Displaying Entity Orientation
The normal to one or more surfaces, mesh faces, or mesh triangles may be drawn with the command

Draw {Surface | Face | Tri} <id_range> Normal [Length <length>] [Face | Tri]

If the Face or Tri qualifier is included in the Draw Normal command, the normals for all faces or tris that belong to the
specified surface are drawn.

The forward, or tangent, direction of a curve can be drawn with the command:

92

Drawing and Highlighting Entities

Draw Curve <id_range> Tangent [Length <length>][Color <color_spec>]

If a color is not specified, the tangent is drawn in the same color as the curve.

Volume Sources and Targets

Once the source and target surfaces have been set on a volume that will be meshed with the sweep algorithm, the source
and target may be visually identified with the command

Draw Volume <volume_id_range> [Source][Target] [Length <size>]
If the Source keyword is included, the normal of the source surface or surfaces will be drawn in green into the specified

volume. If the Target keyword is included, the normal of the target surface or surfaces will be drawn in red into the
specified volume.

Model Axis

The model axis may be drawn with the command
Draw Axis [Length <length>]

The axis is drawn as three lines beginning at the model origin, one line in each of the three coordinate directions. The
length of those lines is determined by the length parameter, which defaults to 1.

Surface Isoparameter Lines

Isoparameter lines may be drawn on surfaces in the model using the command

Draw Surface <surface_id_range> Isoparametric [Number <number>| [u <number>] [v <number>]]

If you specify the Number of lines, then the number of u- and v-parameter lines will be equal. You may specify instead a

number of lines for each of the u and v parameters. The u-parameter lines will be drawn in red and the v-parameter lines
will be drawn in blue.

Surface Overlap

The overlapping regions between two surfaces may be drawn with the command

Draw Surface <id> <id>Overlap [Add]

This command will draw the curves of each of the surfaces in green, and the portion of the surfaces that overlap in red.

The Add keyword will draw the overlapping surfaces on top of the current graphics display. Without the Add keyword, the
display will only show the specified surfaces and their overlapping regions.

Geometry Preview

Several options are available for previewing geometry without actually generating it. This is typically used in conjunction
with webcutting and surface creation. The following Draw commands can be used for previewing geometry:

Draw Location On Curve

Draw Location
Draw Direction
Draw Axis

Draw Plane

Draw Cylinder

93

mCubit 12.1 User Documentation

Mesh Visualization

A volume mesh can be viewed one layer at a time using a visualization tool known as mesh slicing. This tool divides the
elements of one or more volumes into axis-aligned layers, and then allows the mesh to be displayed one layer at a time.
Mesh slicing is especially useful to view the quality of swept meshes that are axis aligned.

Notes on Mesh Slicing

Mesh slicing is only intended to be a rough visualization tool. Because the average mesh edge length is used to
determine the thickness of each layer, a layer may be more than one element deep. Unstructured meshes, meshes with
large variations in edge length, and non-axis-aligned meshes will be more difficult to visualize with this tool.

Mesh Slicing Command

Mesh slicing can be started either by entering a keypress in the graphics window, which slices the mesh of the entire
model, or by entering the command

Graphics Slice {Body | Volume} <id_range> Axis {X | Y | Z}
which slices only the bodies or volumes indicated, with a plane along the axis specified.

Key presses in the graphics window which control mesh slicing are summarized in the following table.

Key Action

X,YorZ Initiate mesh slicing using the X, Y or Z plane

K Move the slicing plane in the positive coordinate direction
J Move the slicing plane in the negative coordinate direction
S Toggles drawing single or multiple slice layers in the view
Q Exit from mesh slicing mode

94

‘Cubit 12.1 User Documentation

Graphics Clipping Plane

The graphics clipping plane feature allows the user to temporarily cut parts of the model away to help visualize the interior
of a geometry or mesh. The command syntax is:

Graphics Clip {On|Off} [Location <location>] [Direction <direction>]
Graphics Clip Manipulation {On|Off}

The first command activates the graphics clip manipulation tools in the graphics window. The keyboard shortcut "Shift-S"
while the graphics window is active will also activate the clipping plane. The manipulation of the clipping plane is
controlled as follows:

¢ Red Line - Clicking and dragging the left mouse on plane bounded by a red tube moves the plane along the
arrow

. Center Ball - Clicking and dragging the left mouse on the center ball moves the origin of the rotation plane

* Arrow - Clicking and dragging the left mouse button on the arrow head or tail changes the direction on which
the plane moves

d Right Mouse Button - Clicking and dragging the right mouse button on any part of the window resizes it

d Middle Mouse Button - Clicking and dragging the middle mouse button on the red plane moves both the
center of rotation and the cutting plane

¢ White Bounding Border - Clicking and dragging the left mouse on the white bounding border moves the whole
widget

Figure 1. Graphics Clipping Plane

The second command turns on/off the visibility of manipulation widget in the graphics window. The clipping plane is still
active, but the controls are hidden. The normal mouse-based view navigation controls apply.

95

Cubit 12.1 User Documentation

Examples

brick x 10

sphere rad 1

graphics clip on location -2 0 0
rotate -45 about y

#shows the sphere inside the brick

brick x 10

cylinder rad 2 z 12

subtract 2 from 1

mesh vol 1

quality vol 1 draw mesh

graphics clip on

#shows the mesh quality on interior elements

IIILHQ

0.240

0.737

Figure 2. Viewing mesh quality of interior elements

96

mCubit 12.1 User Documentation

Entity Labels

Most entities may be labeled with text that is drawn at the centroid of the entity.

Mesh entities can be labeled with their ID number or their Genesis ID. Genesis ID labels are only valid after exporting a
mesh.

Geometric entities can be labeled with their ID number or with other information.

Labels for groups of entity types can be turned on or off.

The following commands will accomplish this.

Label [On|Off|[Name [Only|ID]|ID|Interval|Size|Merge|Firmness]

Label All [On|Off[Name [Only|ID]|ID|Interval|Size|Merge|Firmness]

Label Body [On|Off| Name [Only|ID] |ID|Interval|Size| Merge |Firmness]

Label Curve [On|Off[Name [Only|ID] |ID| Interval| Size| Merge| Firmness]

Label {Hex|Tet|Face|Tri|Edge} [On|Off]

Label Geometry [On|Off[Name [Only|ID] |ID| Interval| Size| Merge| Firmness]

Label Mesh [On|Off]

Label Node [On|Off|Genesis]

Label Surface [On|Off[Name [Only|ID] |ID| Interval| Scheme| Size| Merge| Firmness]

Label Vertex [On|Off[Name [Only|ID] |ID|Interval| Size| Merge| Firmness]

Label Volume [On|Off|[Name [Only|ID] |ID |Interval| Size |Scheme |[Merge |Firmness]

The meaning of each of each label type is listed below. Note that some label types don't make sense for every entity type.
On - The same as IDs.

Name - Name of the entity, if the entity has been named. Default name otherwise.

Name Only - If the entity has been named, use the name as the label. Otherwise, don't use a label.
Name IDs - If the entity has been named, use the name as the label. Otherwise, use the ID as the label.
Interval - The number of intervals set on the entity.

Firmness - Same as interval, but followed by a letter indicating the firmness of the interval setting (see the Mesh
Generation chapter for description of firmness settings.)

Merge - Whether or not the entity is mergeable. Note that this is sometimes not clear, because, for example, a curve may
show that it isn't mergeable because one of its owning surfaces may be unmergeable, while another owning surface may
be mergeable.

Size - The mesh size set on this entity.

Note: Three dimensional entity types such as body will have their labels displayed in the center of the entity. Thus, in the
smooth shade and hidden line graphics modes the labels will be hidden

97

Cubit 12.1 User Documentation

98

mCubit 12.1 User Documentation

Colors

Specifying Colors in Commands

There are five ways to refer to a color in a command. They are

<Color_Name>
User "name"
ID <id>
Default
Highlight

arON=

The first option uses the name of a pre-defined color as listed in the Available Colors Appendix. This option may not be
used for user-defined colors. An example of a pre-defined color assignment is given below:

color volume 1 lightblue

The second option is used with user-defined colors only. Include the name of the user-defined color in quotes. Pre-defined
colors will not work with this command.

color volume 1 user "mycolor"

The third option allows you to identify a pre-defined color by its ID. The color IDs are also listed in the Available Colors
appendix. This option is rarely used.

color volume 1id 5

The default option is used to set an entity's color to its default value. The default color may also be specified in drawing
commands, but the command's behavior will be the same as if the color option had not been included at all.

color volume 1 default
The fifth option refers to the current highlight color.

draw curve 1 tangent color highlight

User-Defined Colors

CUBIT has a palette of 85 pre-defined colors, listed in the Appendix under Available Colors. Users may also define their
own colors in addition to those defined by CUBIT. Each color is defined by a name and by its RGB components, which
range from O to 1.

To define an additional color, use either of the commands

Color Define "<name>" RGB <r g b>

Color Define "<name>" R <r> G <g> B .

A maximum of 15 user-defined colors may be stored at one time, so it may be necessary to clear a color definition. This is
done with the command

Color Release "<color_name>"
Color names can be listed with the command

Help Color

99

Cubit 12.1 User Documentation

They are also listed in the appendix of this manual, along with their RGB definitions. To view a chart of color names and
IDs, including those for user-defined colors, use the command

Draw Colortable

Assigning Colors

Colors can be assigned to all geometric entities, and to some other objects as well. To assign a color to an entity or other
object, use one of the following commands.

Color Axis Labels {<color_name>| id <color_id>}

Color Background {<color_name>| id <color_id>} [<color_name2>|id <color_id2>]

Color Block <block_id_range>{<color_name> | id <color_id>}

Color Body <body_id_range> [Geometry|Mesh] {<color_name>| id <color_id> | Default}

Color Curve <curve_id_range> [Geometry|Mesh] {<color_name>| id <color_id> | Default}

Color Group <group_id_range> [Geometry|Mesh] {<color_name>| id <color_id> | Default}

Color Highlight {<color_name>| id <color_id>}

Color Lines <color_name>

Color NodeSet <id_range> { <color_name> | id <color_id> | Default }

Color SideSet <id_range>{ <color_name> | id <color_id> | Default }

Color Surface <surface_id_range> [Geometry|Mesh] {<color_name>|Default}

Color Title {<color_name>|id <color_id>}

Color Volume <volume_id_range> [Geometry|Mesh] {<color_name>| id <color_id> | Default}

Including the Mesh keyword will change the color of the mesh belonging to the specified entity, without changing the color
of the entity geometry itself. Conversely, including the Geometry keyword will change the geometry color without changing
the mesh color. Including both keywords is identical to including neither keyword.

Colors are inherited by child entities. If you explicitly set the color for a volume, for example, all of its surfaces will also be
drawn in that color. Once you assign a color to an entity, however, it will remain that color and will no longer follow color
changes to parent entities. To make an entity follow the color of its parent after having explicitly set another color, use

Default as the color name in the color command.

Colors can also be assigned to nodesets, sidesets, and element blocks. These colors do not take effect, however, unless
the nodeset, sideset, or element block is drawn with a Draw command.

The background color and the color used to draw highlighted entities can be changed to any color.

By default, the axes are labeled with a white X, Y, and Z, indicating the three primary coordinate directions. If the
background is changed to white, these labels are impossible to read; the color used to draw axis labels can be changed to
any color. Changing the axis label color will change the text color for both the model axis and the triad (corner axis).

When several entity types are labeled, it can become difficult to determine which labels apply to which entities. To help
distinguish which entities are being referred to by the labels, you may want to change the color of labels for specific entity

types.

When a meshed surface is drawn in a shaded graphics mode, the mesh edges are not drawn in the same color as the
surface. This is to prevent confusion between mesh edges and geometric curves, and to make the mesh edges more
visible. The color used to draw mesh edges in this situation is known as the line color, and is gray by default; this color
can be changed to any color.

100

mCubit 12.1 User Documentation

Geometry and Mesh Entity Visibility

The visibility of geometric and mesh entities can be turned on or off, either individually, by entity type, by general entity
class (mesh, geometry, etc.), or globally. Note that these commands do not refresh automatically. To refresh type display
or graphics flush or click in the display window.

The commands to set the visibility are:

{ {Body|Curve|Surface|Volume} <range> } [Mesh][Geometry] Visibility [On|Off]

Edge Visibility [On | Off]

Vertex [Visibility] [on|off]

{Mesh|Geometry} { [Visibility] [on|off] }

If the Mesh keyword is included, only the visibility of the mesh belonging to the specified entity is affected. Similarly, if the
Geometry keyword is included, only the visibility of the geometry is affected. Including neither keyword is identical to
using both keywords.

Invisibility of geometry is inherited; visibility is not. For example, if a volume is invisible, its surfaces are also invisible
unless they also belong to some other visible volume. As another case, if the volume is visible, but a surface is set to
invisible, the surface will not follow its parent's visibility setting, but will remain invisible.

If edge visibility is off, mesh edges will not be drawn when mesh faces are drawn.

If vertex visibility is turned on, the vertices of the geometry become visible. The default for vertex visibility is off.

After turning mesh visibility off, all mesh will remain invisible until mesh visibility is turned on again. This is true no matter
what other visibility commands are entered.

Similarly, after turning geometry visibility off, all geometry will remain invisible until geometry visibility is turned on again.
This is true no matter what other visibility commands are entered.

101

mCubit 12.1 User Documentation

Graphics Camera

One way to change what is visible in the graphics window is to manipulate the camera used to generate the scene. A
scene camera has attributes described below, and depicted graphically in Figure 1. The values of these camera attributes
determine how the scene appears in the graphics window.

Position (From) - The location of the camera in model coordinates.

View Direction (At) - The focal point of the camera in model coordinates.

Up Direction (Up) - The point indicating the direction to which the top of the camera is pointing. The Up point determines
how the camera is rotated about its line of sight.

Projection - Determines how the three-dimensional model is mapped to the two-dimensional graphics window.

Perspective Angle - Twice the angle between the line of sight and the edge of the visible portion of the scene.

4 View Up

|
Perspective Angle

Wiewr Brom - Wiegr AL

Figure 1: Schematic of From, At, Up, and Perspective Angle
At any time, the camera can be moved back to its original position and view using the command
View Reset
To see the current settings of these attributes, use the command
List View

The current value of the view attributes will be printed to the terminal window, along with other useful view information
such as the current graphics mode and the width of the current scene in model coordinates.

Camera Attributes can be changed using the Rotate, Zoom and Pan commands, or directly as follows.

Changing Camera Attributes Directly

Camera attributes are most easily modified using interactive mouse manipulation (see Mouse-Based View Navigation) or
using the rotate, pan and zoom commands. However, the camera attributes can also be modified directly with the
following commands:

From <xy z>

At <xyz>

102

Graphics Camera

At {Body|Volume|Surface|Curve|Vertex|Hex|Tet|Wedge|Tri|Face|Node}<id_list>

Up <xy z>

Graphics Perspective <On|Off>

Graphics Perspective Angle <degrees>

If graphics perspective is on, a perspective projection is used; if graphics perspective is off, an orthographic projection is
used. With a perspective projection, the scene is drawn as it would look to a real camera. This gives a three-dimensional
sense of depth, but causes most parallel lines to be drawn non-parallel to each other. If an orthographic projection is
used, no sense of depth is given, but parallel lines are always drawn parallel to each other.

In a perspective view, changing the perspective angle changes the field of view by changing the angle from the line of

sight to the edge of the visible scene. The effect is similar to a telephoto zoom with a camera. A smaller perspective angle
results in a larger zoom. This command has no effect when graphics perspective is off.

103

mCubit 12.1 User Documentation

Graphics Lighting Model

For shaded graphics display modes, the lighting model controls the intensity of the highlights and shadows for objects
displayed in the graphics window. CUBIT offers two commands for controlling the lighting model.

Graphics Ambient Intensity {<intensity> | <r g b>}
Graphics Light Intensity {<intensity> | <r g b>}

The ambient intensity is the light available in the environment. There is no particular direction to the light source. In
contrast, the light intensity is the effect of a simulated light source placed at the viewer's line of sight. The light intensity
affects the intensity of the highlights and shadows, while the ambient intensity affects the brightness of the objects in the
overall scene.

An intensity value from 0 to 1 can be used, where 0 represents no light and 1 represents maximum. Alternatively rg b
color components can be used. This changes the color of the directional or ambient light source, affecting the resulting
color of the objects in the model.

104

mCubit 12.1 User Documentation

Graphics Window Size and Position

By default in the command line version, CUBIT will create a single graphics window when it starts up (to run CUBIT
without a graphics window, include -nographics on the command line when launching CUBIT.) The graphics window
position and size is most easily adjusted using the mouse, like any other window on an X-windows screen. However, the
size of the graphics window can also be controlled using the following commands:

Graphics WindowSize <width_in_pixels> <height_in_pixels>

Graphics WindowSize Maximum

Graphics WindowSize Minimum

After using the Graphics WindowSize Maximum and Graphics WindowSize Minimum commands, the previous
window size can be restored by using the command

Graphics WindowSize Restore

The position of the graphics window can also be controlled using the Graphics WindowLocation command.
Graphics WindowLocation <x> <y>

The <x> and <y> coordinates refer to the distance in pixels from the upper left hand corner of the monitor.

In addition, on Unix workstations, the graphics window size and position can be controlled by placing the following line in
the user's .Xdefaults file:

cubit.graphics.geometry XxY+xpos+ypos

where the X and Y are window width and height in pixels, respectively, and xpos and ypos are the offsets from the upper
left hand corner.

Using Multiple Windows

You can use up to ten graphics windows simultaneously, each with its own camera and view. Each window has an ID,
from 1 to 10, shown in the title bar of the window. Commands that control camera attributes apply to only one window at a
time, the active window. Currently, the display lists of all windows are identical.

The following commands are used to create, delete, and make active additional graphics windows.

Graphics Window Create [ID]

Graphics Window Delete <ID>

Graphics Window Active <ID>

105

mCubit 12.1 User Documentation

Saving Graphics Views

The current graphics view can be saved and restored using the following commands:
View Save Position <n>
View Restore Position <n>

When you save a view, you save the camera settings in effect at the time the command is issued. When you restore the
view, the camera is returned to the saved position, orientation, and field of view.

If autocenter is on at the time you save the view, then restoring the view will automatically adjust the camera settings to
center on the entire model and fit the entire model on the screen, a lot like "zoom reset." You turn autocenter on by typing
"graphics autocenter on."

Example of how to save a top view:

ato

from010

up10

graphics autocenter on

view save position 3

Use this command to restore that view:

view restore position 3

The view will then be looking down the y-axis, with the x-axis to the top and the z-axis to the right. The model will be
centered in the view and zoomed so that everything just fits into the graphics window. This is true even if the model is not

centered on the origin.

If autocenter is off when the "view save" command is issued, the camera is not adjusted to fit the scene into the graphics
window. Instead, it is placed exactly where it was at the time the "save" command was issued.

Note that many graphics commands, such as "at", "from", and "up", do not change what appears in the graphics window
until a "display" command is issued. They do, however, take immediate effect internally, and they do affect what is saved
by the "view save" command.

In the command line version of CUBIT, you can save a view by holding down the shift key and pressing one of the
function keys (F1-F12). Each function key corresponds to a different saved view. A total of 12 views can be saved. A view
can be restored at a later time by pressing the appropriate function key WITHOUT holding down the shift key.

It may be useful to save views in your cubit file so that they are available every time you run CUBIT. Use CUBIT to save
front, top, and side views in positions 1, 2, and 3. If views are saved in your cubit file, it is convenient to add a "view reset"
command after the views have been saved. Then the graphics will initially appear as they would if the view commands
had not been included in your cubit file.

106

mCubit 12.1 User Documentation

Hardcopy Output

CUBIT's Graphical User Interface provides the capability to print the contents of the graphics window directly to a printer.

In addition, a command line option is provided for dumping the contents of the graphics window to postscript or image
files.

The command for generating hardcopy output files is:
Hardcopy '<filename>' {jpg | gif | bmp | pnm | tiff | eps} [Window <window_id>]

Each of these options saves the view in the specified window (or the current window), to the specified file, in the format
indicated. The file can then be sent to a printer or inserted into another document.

Screen Capture Programs

It should also be noted that many commercial applications are available for capturing screen images. In many cases,
these applications may be more convenient for interactively capturing and saving a portion of the screen than the
Hardcopy command discussed above. On UNIX platforms, the XV utility written by John Bradley is a good choice. In
some cases this utility or its equivalent may be included with your system software. For Windows users, the Print Screen
button will send a copy of the screen to the clipboard which can then be pasted into a paint program.

107

http://www.trilon.com/

Miscellaneous Graphics Options

In addition to the commands discussed above, there are several other graphics system options in Cubit that can be
controlled by the user.

They include:

. Silhouette Lines

. Line Width

. Highlight Line Width
. Text Size

. Point Size

. Graphics Status

. Graphics Scale
. Model Axis

. Corner Axis

. Resetting the Graphics
* Shrink

. Facet Tolerance

Silhouette Lines

Some shapes, such as cylinders, are drawn with silhouette lines; these lines don't represent true geometric curves, but
help visualize the shape of a surface. Silhouette lines can be turned on or off with the command

Graphics Silhouette [On|Off]
The pattern used to draw silhouette lines can be set using the command

Graphics Silhouette Pattern [Solid | Dashdot | Dashed | Dotted | Dash_2dot | Dash_3dot | Long_dash | Phantom]

Line Width

This option controls the width of the lines used in the wireframe, shaded, transparent, hiddenline and truehiddenline
displays. The default is 1 pixel wide. The command to set the line width is

Graphics LineWidth <width_in_pixels>

Highlight Line Width

This option controls the width of the lines used when highlighting an entity. Setting this to a width greater than the global
line width often makes it easier to locate highlighted entities. If this setting has not been changed, the line width set in the
command above is used. After using this command, it is necessary to refresh the graphics by either typing "display" or
clicking the Refresh Graphics button. The command to set the highlighting line width is

Highlight LineWidth <width_in_pixels>

Text Size

This option controls the size of text drawn in the graphics window. The size given in this command is the desired size
relative to the default size. After using this command, it is necessary to refresh the graphics by either typing "display" or
clicking the Refresh Graphics button. The command to set the text size is

Graphics Text Size <size>

108

Miscellaneous Graphics Options

Point Size

This option controls the size of points drawn in the graphics window, such as vertices or heads of vectors; alternatively,
the size of points representing nodes or vertices can be set independently of the global point size. The commands to set
the point sizes are

Graphics Point Size <size>

Graphics [Node|Vertex] Point Size <size>

Graphics Status
All graphics commands can be disabled or re-enabled with the command
Graphics {On|Off}

While graphics are off, changes in the model will not appear in the graphics window, and all graphics commands will be
ignored. When graphics are again turned on, the scene will be updated to reflect the current state of the model.

Graphics Scale

A graphical scale can be drawn in the graphics window within the viewing area to obtain a bearing on model or part sizes.
The command to turn the graphical scale on and off is:

Graphics Scale [On|Off]

Model Axis

The model axis may be drawn in the scene at the model origin. The axis is controlled with the command
Graphics Axis [Type <AXIS | Origin>] [On|Off]
The command is used to specify whether the model axis is visible, and to determine how the axis is drawn. If you include

Type Axis , the axis will be drawn as three orthogonal lines; if you include Type Origin, the axis will be drawn as a circle at
the model origin.

Corner Axis (Triad)

By default, an axis appears in the corner of the graphics window. This corner axis, also called the triad, can be disabled or
re-enabled with the command

Graphics Triad [On | Off]

Resetting the Graphics
Many of the graphic options can be reset back to default values with the command:
Graphics Reset
The graphic options set to defaults are:
. ambient and spot light intensity
. background color
° text size
. graphics mode
. silhouetting

. point size
. view type (Perspective)

In addition, this command also:

109

Cubit 12.1 User Documentation

. centers the view on all visible entities (Zoom Reset)

. turns all labeling off

. turns vertex visibility off

. turns mesh and geometry visibility on

. moves the graphics camera back to its original position (View Reset)

Shrink

The shrink graphics attribute allows you to view the elements shrunken about their centroid. This is useful for viewing 3D
meshes, permitting viewing of interior elements. It may also be useful for visually inspecting the mesh for missing
elements. To use the shrink option use:

graphics shrink <value>
draw hex <range>

draw tet <range>

etc...

where value is a number between 0 and 1. One (1) will shrink the elements to a point, while zero (0) will not shrink the
elements. The following figures illustrate the effect of element shrink on a hex mesh.

110

Miscellaneous Graphics Options

Figure 1. Top: shrink=0.2, Bottom: shrink=0.5

Facet Tolerance

The graphics tolerance commands change the way that facets are drawn in the graphics window. It does not affect the
underlying geometry, just the graphics display. It can be useful to change the facet tolerance on large models if the
refresh speed is slow.

Graphics Tolerance [[ANGLE|Distance] <val>|Default]
Specifying an angle will change the maximum allowable angle between neighboring facets. The distance option will set a

maximum distance between adjacent facets. Increasing either of these numbers will result in coarser facets. The default
option will return values to their default settings.

111

mCubit 12.1 User Documentation

Command Line Entity Specification

CUBIT identifies objects in the geometry, mesh, and elsewhere using ID numbers and sometimes names. IDs and names
are used in most commands to specify which objects on which the command is to operate.

These objects can be specified in CUBIT commands in a variety of ways, which are best introduced with the following
examples (the portion of each command which specifies a list of entities is shown in blue):

General ranges: Surface 12 4 to 6 by 2 3 4 5 Scheme Pave

Combined geometry, mesh, and genesis entities: Draw Sideset 1 Curve 3 Hex 2 4 6

Geometric topology traversal: Vertex in Volume 2 Size 0.3

Mesh topology traversal: Draw Edge in Hex 32

All keyword: ListBlock all

Expand keyword: my_curve_group expand Scheme Bias Factor 1.5

Except keyword: List Curve 1 to 50 except 2 4 6

In addition to the examples above, there is an extended parsing capability that allows entities to be specified by a general

set of criteria. See Extended Entity Specification for details. The following is a simple example of an extended entity
specification:

By Criteria: Draw Curve With Length > 3

Types of Entity Range Input

The types of entity range input available in CUBIT can be classified in 4 groups:
1. General range parsing

Entity IDs can be entered individually (volume 1), in lists (volume 1 2 3), in ranges (volume 3 to 7), and in
stepped ranges (volume 3 to 7 step 2). The word all may also be used to specify all entities of a given type.

An ID range has the form <start_id> to <end_id>. It represents each ID between start_id and end_.id, inclusive.
A stepped ID range has the form <start_id> To <end_id> {Step|By} <step>. It represents the set of IDs
between start_id and end_id, inclusive, which can be obtained by adding some integer multiple of step to
start_id. For example, 3 to 8 step 2 is equivalentto 3 5 7.

The various methods of specifying IDs can be used together. For example:

draw surface 1 2 4 to 6 vertex all
2. Topological traversal

Topological traversal is indicated using the "in" identifier, can span multiple levels in a hierarchy, and can go
either up or down the topology tree. For example, the following entity lists are all valid:

vertex in volume 3

volume in vertex 2 4 6

112

Command Line Entity Specification

curve 1 to 3 in body 4 to 8 by 2

If ranges of entities are given on both sides of the "in" identifier, the intersection of the two sets results. For
example, in the last command above, the curves that have ids of 1, 2 or 3 and are also in bodies 4, 6 and 8 are
used in the command.

Topology traversal is also valid between entity types. Therefore, the following commands would also be valid:
draw node in surface 3

draw surface in edge 362

draw hex in face in surface 2

draw node in hex in face in surface 2

draw edge in node in surface 2
3. Exclusion

Entity lists can be entered then filtered using the "except" identifier. This identifier and the ids following it apply
only to the immediately preceding entity list, and are taken to be the same entity type. For example, the
following entity lists are valid:

curve all except24 6
curve 12 5 to 50 except 2 3 4
curve all except 2 3 4 in surface 2 to 10

curve in surface 3 except 2 (produces empty entity list!)
4. Group expansion

Groups in CUBIT can consist of any number of geometry entities, and the entities can be of different type
(vertex, curve, etc.). Operations on groups can be classified as operations on the group itself or operations on
all entities in the group. If a group identifier in a command is followed immediately by the “expand' qualifier, the
contents of the group(s) are substituted in place of the group identifier(s); otherwise the command is interpreted
as an operation on the group as a whole. If a group preceding the “expand' qualifier includes other groups, all
groups are expanded in a recursive fashion.

For example, consider group 1, which consists of surfaces 1, 2 and curve 1. Surfaces 1 and 2 are bounded by
curves 2, 3, 4 and 5. The commands in Table 1, illustrate the behavior of the “expand' qualifier.

Table 1. Parsing of group commands; Group 1 consists of Surfaces 1-2 and Curve 1; Surfaces 1 and 2 are
bounded by Curves 2-5.

Command Entity list produced
Curve in Group 1 Curve 1
Curve in group 1 expand Curves 1,2,3,4,5

The “expand' qualifier can be used anywhere a group command is used in an entity list; of course, commands which apply
only to groups will be meaningless if the group id is followed by the “expand' qualifier.

Precedence of "Except" and "In"

Several keywords take precedence over others, much the same as some operators have greater precedence in coding
languages. In the current implementation, the keyword "Except" takes precedence over other keywords, and serves to
separate the identifier list into two sections. Any identifiers following the "Except" keyword apply to the list of entities
excluded from the entities preceding the "Except". Table 2 shows the entity lists resulting from selected commands.

Table 2. Precedence of "Except" and "In" keywords; Group 1 consists of Surfaces 1-2 and Curve 1.

113

Cubit 12.1 User Documentation

Command Entity list produced
Curve all except 1 in Group 1 (All curves except curve 1)
Curve all except 2 3 4 in Surf 2 to 10 (All curves except 2, 3, 4)

In the first command, the entities to be excluded are the contents of the list "[Curve] 1 in Group 1", that is the intersection
of the lists "Curve 1" and "Curve in Group 1"; since the only curve in Group 1 is Curve 1, the excluded list consists of only
Curve 1. The remaining list, after removing the excluded list, is all curves except Curve 1.

In the second command, the excluded list consists of the intersection of the lists "Curve 2 3 4" and "Curve in Surf 2 to 10";
this intersection turns out to be just Curves 2, 3 and 4. The remaining list is all curves except those in the excluded list.

Placement in CUBIT Commands

In general, anywhere a range of entities is allowed, the new parsing capability can be used. However, there can be
exceptions to this general rule, because of ambiguities this syntax would produce. Currently, the only exception to this rule
is the command used to define a sideset for a surface with respect to an owning volume.

114

a1m1Cubit 12.1 User Documentation

Entity Selection

. Command Line Entity Specification
. Extended Command Line Entity Specification
. Selecting Entities With the Mouse

CUBIT Entity specification is a means of selecting objects or groups of objects. Entities can be selected from the
command line using entity specification parameters, or directly in the graphics window using the mouse. This chapter

describes these methods of entity selection.

115

mCubit 12.1 User Documentation

Environment Control

. Session Control

. Graphical User Interface

. Command Recording and Playback

. Graphics Window Control

. Entity Selection and Filtering

. Location, Direction, and Axis Specification
. Listing Information

The CUBIT user interface is designed to fill multiple meshing needs throughout the design to analysis process. The user
interface options include a full graphical user interface, a modern command line interface as well as no-graphics and
batch mode operation. This chapter covers the interface options as well as the use of journal files, control of the graphics,
a description of methods for obtaining model information, and an overview of the help facility.

116

Extended Command Line Entity Specification

In addition to basic entity specification, entities may be specified using an extended expression. An extended expression

identifies one or more entities using a set of entity criteria. These criteria describe properties of the entities one wishes to

operate upon.

Extended Parsing Syntax

The most common type of extended parsing expression is in the following format:

{Entity_Type} With {Criteria}

Entity_Type is the name of any type of entity that can be used in a command, such as Curve, Hex, or SideSet. Criteria is
a combination of entity properties (such as Length), operators (such as >=), keywords (such as Not), and values (such as
5.3) that can be evaluated to true or false for a given entity. Here are some examples:

curve with length <1

surface with is_meshed = false

node with x_coord > 10 And y_coord > 0

Keywords

These are the keyword defined by extended parsing

Keyword

All, To, Step, By, Except, In,
Expand

Not

Of

And, Or

<>=>==<

Description

These keywords are used the same way as in basic entity specification. For
example:

draw surface all
draw surface 1 to 5 step 2 curve 1 to 3 in body 4 to 8 by 2
draw hex in face in surface 2

draw node in hex in face in surface 2 curve 1 2 5 to 50 except 2 3 4

Not flips the logical sense of an expression - it changes true to false and false to
true. For example:

draw surface with not is_meshed

The "of" operator is used to get an attribute value for a single entity, such as
"length of curve 5". Only attributes that return a single numeric value may be used
in an "of" expression. There must be only one entity specified after the "of"
operator, but it can be identified using any valid entity expression. An example of a
complete command which includes the "of" operator is:

list curve with length < length of curve 5 ids

These logic operators determine how multiple criteria are combined.

draw surface with length > 3 or with is_meshed = false

These relational operators compare two expressions. You may use = or == for
"equals". <> means "not equal". For example:

117

Cubit 12.1 User Documentation

draw surface with x_max <=3

draw volume with z_max <>12.3

These arithmetic operators work in the traditional manner.

+ - %
draw surface with length * 3 + 1.2 > 10
Parentheses are used to group expressions and to override precedence. When in
() doubt about precedence, use parentheses.
draw surface with length > 3 and (with is_meshed = false or x_min > 1)
Functions

The following functions are defined. Not all functions apply to all entities. If a function does not apply to a given entity, the
function returns 0 or false.

Keyword

ID

Length

Area

Exterior_Angle

Is_Meshed

Is_Spline

Is_Plane

Is_Periodic

Is_Sheetbody

Element_Count

Dimension

Description

the ID of an entity

The length of a curve or edge

The area of a surface.

Works for curves with an exterior angle greater than (>), less than (<), or equal to
(=) a given angle in degrees. This is used if you want to do some operation, such
as refinement, on all the reentrant curves or curves with surfaces that form a
certain angle.

Whether a geometric entity has been meshed or not

Whether a geometric entity is defined using a NURBS representation. Otherwise
the entity has an analytic representation.

Whether a geometric surface is planar.

Whether a geometric surface is periodic, such as a sphere or torus.

A geometric entity is a sheetbody if it is a collection of surfaces that do not form a
solid.

The number of elements owned by this geometric entity. Only elements of the
same dimension as the entity are counted (number of hexes in a volume, number
of faces on a surface, etc.)

The topological dimension of an entity (3 for volumes, 2 for surfaces, etc.).

X_Coord, Y_Coord, Z_Coord The x, y, or z coordinate of the point at the center of the entity's bounding box.
X_Min, Y_Min, Z_Min The x, y, or z coordinate of the minimum extent of the entity's bounding box
X_Max, Y_Max, Z_Max The x, y, or z coordinate of the maximum extent of the entity's bounding box

Whether a geometry entity has a merge flag on. All geometric entities have one set

Is_Merged by default.

118

Extended Command Line Entity Specification

A flag that specifies whether an entity is virtual geometry. An entity is virtual if it has

Is_Virtual at least one virtual (partition/composite) topology bridge.
Has_Virtual An entity "has_virtual" if it is virtual itself, or has at least one child virtual entity
Is_Real An entity "is_real" if it has at least one real (non-virtual) topology bridge.

Used to specify geometry entities with a specified number of parent entities. May
Num_Parents be used to find "free curves" where num_parents=0 or non-manifold curves where
num_parents>2.

Precedence

For complicated expressions, which entities are referred to is influenced by the order in which portions of the expression
are evaluated. This order is determined by precedence. Operators with high precedence are evaluated before operators
with low precedence. You may always include parentheses to determine which sub-expressions are evaluated first. Here
all operators and keywords listed from high to low precedence. ltems listed together have the same precedence and are
evaluated from left to right.

(,) Expand Not *, / +, - <, >, <=, >=, <> = And, Or Except In Of With

Because of precedence, the following two expressions are identical:

curve with length + 2 * 2 > 10 and length <= 20 in my_group

expand(curve with (((length + (2*2)) > 10)and(length <= 20))) in (my_group expand)

119

mCubit 12.1 User Documentation

Selecting Entities with the Mouse

The following discussion is applicable only to the command line version of CUBIT. See GUI Entity Selection for a
description of interactive entity selection with the Graphical User Interface.

Many of the commands in CUBIT require the specification of an entity on which the command operates. These entities are
usually specified using an object type and ID (see Entity Specification) or a name. The ID of a particular entity can be
found by turning labels on in the graphics and redisplaying; however, this can be cumbersome for complicated models.
CUBIT provides the capability to select with the mouse individual geometry or mesh entities. After being selected, the ID
of the entity is reported and the entity is highlighted in the scene. After selecting the entities, other actions can be
performed on the selection. The various options for selecting entities in CUBIT are described below, and are summarized
in Table 1:

Table 1. Picking and key press operations on the picked entities
Key Action
ctrl + B1 Pick entity of the current picking type.

shift +
ctrl + B1

Add picked entity of the current picking type to current picked entity list.
tab Query-pick; pick entity of current picking type that is below the last-picked entity.

n Lists what entities are currently selected.

Lists basic information about each selected entity. This is similar to entering a List command for
each selected entity.

Lists geometric information about the selection. As if the List Geometry command were issued
for each entity. If there are multiple entities selected, a geometric summary of all selected

g entities is printed at the end, including information such as the total bounding box of the
selection.

i Makes the current selection invisible. This only affects entities that can be made invisible from
the command line (i.e. geometric entities.)

s Draws a graphical scale showing model size in the three coordinate axes. This is a toggle

action, so pressing the 's' key again in the graphics window will turn the scale off.

ctrl +z Zoom in on the current selection.

e Echo the ID of the selection to the command line.

Add the current selection to the picked group. Only geometry will be added to the group (not
a mesh entities). If a selected entity is already in the picked group, it will not be added a second
time.

Remove the current selection from the picked group. If a selected entity was not found in the
picked group, this command will have no effect.

ctrl + r Redisplays the model.

120

Selecting Entities with the Mouse

c Clear the picked group. The picked group will be empty after this command.
m Lists what entities are currently in the picked group.
d Display and select the entities in the picked group.

ctrl + d Draws the entity that is selected.

Details of selecting entities with a mouse are outlined in the following items:

. Entity Selection

. Query Selection

* Multiple Selected Entities

. Information about the Selection

. Picked Group
. Substituting the Selection into Commands

Entity Selection

Selecting entities typically involves two steps:
1. Specifying the type of entity to select

Clicking on the scene can be interpreted in more than one way. For example, clicking on a curve could be intended to
select the curve or a mesh edge owned by that curve. The type of entity the user intends to select is called the picking
type. In order for CUBIT to correctly interpret mouse clicks, the picking type must be indicated. This can be done in one of
two ways. The easiest way to change the picking type is to place the pointer in the graphics window and enter the
dimension of the desired picking type and an optional modifier key. The dimension usually corresponds to the dimension
of the objects being picked:

Table 2. Picking Modes in Graphics Window

Number Default pick Number +shift pick
0 vertices nodes

1 curves edges

2 surfaces all 2D elements

3 volumes all 3D elements

4 bodies

If a Shift modifier key is held while typing the dimension, the picking type is set to the mesh entity of corresponding
dimension, otherwise the geometry entity of that dimension is set as the picking type. For example, typing 2 while the
pointer is in the graphics window sets the picking type so that geometric surfaces are picked; typing Shift-1 sets the
picking type so that mesh edges are picked. To differentiate between picking "tris" or "quads" use "pick face" or "pick tri"
The picking type can also be set using the command

Pick <entity_type>

where entity_type is one of the following: Body , Volume , Surface , Curve , Vertex , Hex , Tet, Face, Tri, Edge , Node ,
or DicerSheet .

2. Selecting the entities

121

Cubit 12.1 User Documentation

To select an object, hold down the control key and click on the entity (this command can be mapped to a different button
and modifiers, as described in the section on Mouse-Based View Navigation). Clicking on an entity in this manner will first
de-select any previously selected entities, and will then select the entity of the correct type closest to the point clicked.
The new selection will be highlighted and its name will be printed in the command window.

Query Selection

If the highlighted entity is not the object you intended to selected, press the Tab key to move to the next closest entity.
You can continue to press tab to loop through all possible selections that are reasonably close to the point where you
clicked. Shift-Tab will loop backwards through the same entities.

Multiple Selected Entities

To select an additional entity, without first clearing the current selection, hold down the shift and control keys while clicking
on an object. You can select as many objects as you would like. By changing the picking type between selections, more
than one type of entity may be selected at a time. When picking multiple entities, each pick action acts as a toggle; if the
entity is already picked, it is "unpicked", or taken out of the picked entities list.

Information About the Selection

When an entity is selected, its name, entity type, and ID are printed in the command window. There are several other
actions which can then be performed on the picked entity list. These actions are initiated by pressing a key while the
pointer is in the graphics window. Table 1 summarizes the actions which operate on the selected entities.

Picked Group

There is a special group whose contents can be altered using picking. This group is named picked , and is automatically
created by CUBIT. Other than its relationship to interactive picking, it is identical to other groups and can be operated on
from the command line. Like other groups, both geometric and mesh entities can be held in the picked group. Table 1 lists
the graphics window key presses used with the picked group.

Note: It is important to distinguish between the current selection and the picked group contents. Clicking on a new entity
will select that entity, but will not add it to the picked group. De-selecting an entity will not remove an entity from the picked
group.

Substituting Selection into Other Commands

There are three ways to use mouse-based selection to specify entities in commands.

1. The Selection Keyword

You may refer to all currently selected entities by using the word selection in a command; the picked type and ID numbers
of all selected entities will be substituted directly for selection . For example, if Volume 1 and Curve 5 are currently
selected, typing

Color selection Blue

is identical to typing

Color Volume 1 Curve 5 Blue

Note that the selection keyword is case sensitive, and must be entered as all lowercase letters.

2. Echoing the ID of the Selection

Typing an e into a graphics window will cause the ID of each selected entity to be added to the command line at the
current insertion point. This is a convenient way to use entities of which you don't already know the name or ID.

As an added convenience, the picking type can be set based on the last word on the command line using the " key. Note
that this is not the apostrophe key, but rather the left tick mark, usually found at the upper-left corner of the keyboard on
the same key as the tilde (~). For example, a convenient way to set the meshing scheme of a cylinder to sweep would be
as follows:

122

Selecting Entities with the Mouse

Volume (hit *, select cylinder, hit e) Scheme Sweep Source Surface (hit *, select endcap, hit e) Target (select other
endcap, hit e)

The result will be something similar to

Volume 1 Scheme Sweep Source Surface 1 Target 2

Notice that you must use the word Surface in the command, or * will not select the correct picking type.
3. Using the Picked Group in Commands

Like other groups, the picked group may be used in commands by referring to it by name. The name of the picked group
is picked. For example, if the contents of the picked group are Volume 1 and Volume 2, the command

Draw picked
is identical to
Draw Volume 1 Volume 2

Note that picked is case sensitive, and must be entered as all lowercase letters.

123

mCubit 12.1 User Documentation

Specifying a Location

Some commands require a specified location or point (such as create curve spline) for the command. A location is
basically an x-y-z position in the model. The following options determine a location specification:

. [Position] <xval yval zval>

* Last

* [At] {Node|Vertex} <id_list>

* [On] Curve <id_list> [location on curve options]

. [On] Surface <id_list> [Close_To | At Location {options} | CENTER]

* [On] Plane <options> [Close_To | At Location {options}]

. Center Curve <id_list>

e Extrema {Curve|Surface|Volume|Body|Group} <range> [Direction] {options} [Direction {options}] [Direction

{options}

. Fire Ray Location {options} Direction {options} At {Body|Volume|Surface|Curve|Vertex} <ids> [Maximum Hits
<val>] [Ray Radius <val>]

o Between { Location <options> Location <options>} | { Location <options> Project {Curve|Surface} <id> } [Stop]

Fraction <val>] }

* [Move [all] {<xval yval zval> | {Dx|X|Dy|Y|Dz|Z} <val> | Direction {options} Distance <val>}]
* [Swing [all] [About] Axis {options} Angle <ang>]
o Multiple Location Specification

Position (XYZ values)

[Position] <xval yval zval>

The most basic way to specify a location is to just give the xyz values of the location. In this case the following two
commands both draw a location at the coordinates (1, 2, 3), as the Position keyword is optional:

draw location position 12 3
draw location 12 3

Last Location Used in a Command

Last

The last option recalls the last location used in a command. For example, if the following command is entered after the
above position commands a location would be drawn at the position (1, 2, 3).

draw location last

Last locations do not carry over from CUBIT session to CUBIT session. The last location defaults to (0, 0, 0) if no location
has been used during the session.

Node or Vertex
[At] {Node|Vertex} <id_list>

Referring to a node or vertex simply returns the coordinates of that node or vertex. The command can also handle
multiple locations where multiple locations are needed to complete the command string. The following draws a location at
the coordinates of Vertex 5:

124

Specifying a Location

draw location vertex 5

On a Curve

Various options are available to specify a location on a curve. See the section Specifying a Location On a Curve for
details.

On a Surface

[On] Surface <id_list> [Close_To | At Location {options} | CENTER]

If a surface is used to specify a location without other options, the geometrical center of the surface is found (the center
keyword is optional - the default). Otherwise, you can specify another general location and that location is projected to the
surface. For example, the following command will draw the location that is position (5,0,0) projected to surface 1:

draw location on surface 1 location 50 0

Any valid location options listed on this page can be used to specify the location that is projected to the surface.

On a Plane
[On] Plane <options> [Close_To | At Location {options}]

A location can be defined at the closest point on a plane to a location. See Specifying a Plane for plane options.

Center

Center Curve <id_list>

Finds the center of an arc - an error is returned if the curve is not an arc.

Extrema

Extrema {Curve|Surface|Volume|Body|Group} <range> [Direction] {options} [Direction {options}] [Direction {options}]

The extrema option returns the location of the maximum value, on the specified entity or group, in the specified direction.
For example, the following places a vertex on a surface at the point of maximum y-axis value.

create vertex location extrema surf 1 direction y

Fire Ray

The fire ray command allows a user to identify a location, or set of locations, on an object by firing a ray at the object and
determining the intersections. A ray can be fired at a list of bodies, volumes, surfaces, curves, or vertices. The fire ray
command is:

Fire Ray Location {options} Direction {options} At {Body|Volume|Surface|Curve|Vertex} <ids> [Maximum Hits <val>] [Ray
Radius <val>]

The location options are described on this page. The direction options are described under Specifying a Direction. The
user can specify the maximum number of hits that he wishes to receive back from the command. If this value is omitted,
the command will return all intersections found. When firing a ray at a curve, a ray radius must be used. The ray radius is
the distance from the curve the ray must be to be considered a "hit." If no ray radius is used, the geometry engine default
is used.

Between

Between {Location <options> Location <options> } | {Location <options> Project {Curve|Surface} <range>} [Stop]
[Fraction <val>]}

The between option finds a location that is between two locations or a location and an entity. An optional fraction can be

given to specify the fractional distance from the first location to the second location or entity. For example, the following
will draw a location at (5, 0, 0):

125

Cubit 12.1 User Documentation

draw location between location 0 0 0 location 10 0 0

The following will draw a location at (2.5, 0, 0) - 25% of the distance from (0, 0, 0) to (10, 0, 0):
draw location between location 0 0 O location 10 0 O fraction .25

The second item can be an entity:

draw location between location 0 0 0 vertex 2
draw location between location 0 0 0 surface 1

In the second case, location (0, 0, 0) is projected to surface 1, then the location that is between (0, 0, 0) and the projected
location is found.

Of course, any valid location can be used in the command. In the following example a location at the top center of the
brick is found:

brick x 10
draw location between location bet vert 3 vert 2
location bet vert 8 vert 5

The first location is between vertices 3 and 2, and the second location is between vertices 8 and 5.

Note: you can "swing" a location about an axis, "rotate" a direction about another direction, "revolve" an axis about
another axis and "spin" a plane about an axis. The only reason Cubit needs to use different keywords for each entity type
is because the Cubit command language does not support expressions (as in using parentheses). The keyword stop is
also used in the location/direction/axis/plane parsing as a partial workaround to this limitation. Using this stop keyword will
aid in parsing out extended location specifications. Insert a stop after the first location to let the parser know that where
the specifications begin and end.

Move
Move [All] { <xval yval zval> | {Dx|X|Dy|Y|Dz|Z} <val> | Direction {options} Distance <val> }

Any location can be optionally moved either a xyz distance or a certain distance in a given direction. As many moves as
desired can be strung together. For example, the following will return a location at (5, 0, 0):

draw location 0 0 0 move 50 0

These examples add another move that basically moves the location (5, 0, 0) in a direction 45 degrees up and to the right
a distance of 10 (all three commands are equivalent - see sections on directions and rotations):

draw location 0 0 0 move 5 0 0 move {10*sind(45)} {10*sind(45)} O

draw location 0 0 0 move 5 0 0 move direction 1 1 0 distance 10
draw location 0 0 0 move 5 0 0 move direction 1 0 O rotate about 0 0 1 angle 45 dist 10

Swing
Swing [All] [About] Axis {options} Angle <ang>

Any location can be "swung" (rotated) about an axis by a certain angle. (See the section on specifying an axis for the axis
syntax). As with moves, multiple swings can be strung together. The following example rotates the location (2.5, 5, 5)
thirty degrees about an axis defined by Curve 11. Note that the right-hand rule is used to determine the direction of the
swing about the axis.

draw location 2.5 5 5 swing about axis curve 11 angle 30

126

Specifying a Location

(starf) (2.5, 5, 5

Figure 1 - Swinging a Location

Multiple Location Specification
Location {options} Location {options}...

Multiple location specifications can be used in a single command. For example, the following command uses several
locations to create a spline curve at points (0,0,0), (1,2,3), (4,5,6), and (7,8,9).

create curve spline location 0 0 0 location 1 2 3 location 4 5 6 location 7 8 9

Previewing a Location

Sometimes it is advantageous to preview a location before using it in a command. A location can be previewed with the
Draw command. All of the options that can be used to specify locations in a command can be used to preview locations
as well. See above for a description of these options. The command syntax is:

Draw Location {options}

127

mCubit 12.1 User Documentation

Specifying a Location on a Curve

Some commands require you to specify a location on a curve (i.e., webcutting with a plane normal to a curve). The
following are the options for specifying a location (or locations in the case of the segment option) on a curve:

° {MIDPOINT|Start|End}

* Fraction <val 0.0 to 1.0> [From Vertex <id> | Start|End]

. Distance <val> [From {Vertex|Curve|Surface} <id> | Start | End]

e {{Close_To|At} Location {options} | Position <xval><yval><zval> | {Node|Vertex} <id>}
* Extrema [Direction] {options} [Direction {options}] [Direction {options}]

* Segment <num_segs>

* Crossing {Curve|Surface} <id_list> [Bounded|Near]}

. Previewing a Location

Start, Midpoint, or End
{ MIDPOINT | Start | End |

These options simply specify the location that is the midpoint, start or end point of a curve. By default, the midpoint is the
understood location unless another location is specified.

Fraction
Fraction <val 0.0 to 1.0> [From Vertex <id> | Start|End] |

The fraction option simply finds the location that is a fractional distance along the curve. By default, the fraction references
the start of the curve; however, you can optionally specify which vertex to reference from.

Distance
Distance <d> [From {Vertex|Curve|Surface} <id> | Start | End] |

The distance option not only can find a location that is a certain distance along the curve from the start or end of the
curve, but can also find a location (or locations if there is more than one solution) on a curve that is a specified distance
from another curve or a surface. If the From Curve option is used both curves must lie in the same plane.

draw location on curve 13 distance 7 from curve 2

128

Specifying a Location on a Curve

Churve 2

Cure 13
Distance = 7.0 ¢

¥ Resultant

Location

Figure 1 - Location on a Curve a Distance from Another Curve

{Close_To|At} Location

{{Close_To|At} Location {options} | Position <xval><yval><zval> [{Node|Vertex} <id>} |

These options take a location closest to the location on the curve.

Extrema

Extrema [Direction] {options} [Direction {options}] [Direction {options}]
The extrema option finds the maximum value location along a curve in a specified direction. For example:
create vertex location on curve 1 extrema ny

Creates a vertex on curve 1 at the location where the y axis value of the curve is at a minimum.

Segment
Segment <num_segs>

The segment option finds locations spaced evenly along the curve such as to break the curve into equal length
"segments" (of course the curve is not modified). You must specify a minimum of two segments (if two segments were
specified a location would be found at the center of the curve). The following example results in 4 locations:

draw location on curve 1 segment 5

create vertex on curve 1 segment 5

Figure 2 - Five Segments on a Curve

Crossing

Crossing {Curve|Surface} <id_list> [Bounded|Near]}

129

Cubit 12.1 User Documentation

The crossing option finds locations at the intersection of the curve and another curve or surface. By default, the curve(s)
and surface are extended to infinity and the intersections are calculated; if the bounded option is specified only
intersections that lie on the bounded entities will be returned. The near option is valid only for two linear curves. If near is
specified the nearest location between the two linear curves will be returned.

Previewing a Location on a Curve

A location on a curve can be previewed with the Draw command. All of the options that can be used for specifying a
location on a curve can be used to preview a location on a curve. See above for a description of these options. The
command syntax is:

Draw Location On Curve <curve id> {options}

130

»
mCubit 12.1 User Documentation

Specifying a Direction

Some commands require a specified a direction or vector for the command. A direction is basically a xyz vector in the
model. The following options determine a direction specification:

° [Vector] <xval yval zval>

* Last

. X[Y|ZINX|Ny|Nz

¢ [On] | [Tangent] [At] Curve <id> {location on curve options}

e [On] | [Normal] [At] Surface <id> [Location {options}]

e [From] { Location {options} | {Node|Vertex} <id> }[Project] {Location {options} | [Entity] {Node|Vertex|Curve|
Surface} <id>}

. Rotate {options}

* [Cross [With] Direction {options}]

. Reverse

Vector (XYZ values)

[Vector] <xval yval zval>

The most basic way to specify a direction is to just give the vector x-y-z components of the direction. The given vector
need not be a unit vector. The following three commands simply draw a direction in the x-direction (1, 0, 0) as the Vector
keyword is optional and unit vectors are not required:

draw direction vector 1 0 0

draw direction 1 0 0
draw direction 10 0 0

Last Direction Used
Last

The last option recalls the last direction used in a command. For example, if the following command is entered after the
above vector commands a direction location would be drawn in the x-direction (1, 0, 0).

draw direction last

Last directions do not carry over from CUBIT session to CUBIT session. The last direction defaults to (1, 0, 0) if no
direction has been used during the session.

Positive or Negative X,Y,Z Direction Vectors
X|Y|Z|Nx|Ny|Nz

The x|y|z|nx|ny|nz options assign the x direction, y direction, z direction, negative x direction, negative y direction and
negative z direction respectively.

On Curve Tangent

[On] | [Tangent] [At] Curve <id> {location on curve options}

131

Cubit 12.1 User Documentation

The curve option simply finds a tangent vector on a curve. Note that the on, tangent and at keywords are optional, as
well as the location on the curve. If no location is specified, the tangent at the start vertex of the curve is found. See the
section above, Specifying a Location on a Curve, for details on how to specify where along the curve the tangent vector is
found.

draw direction curve 1

draw direction on curve 1

draw direction tangent at curve 1

draw direction tangent at curve 1 distance 3

draw direction tangent at curve 1 fraction .5

draw direction tangent at curve 1 distance 2 reverse

Figure 1 - Tangents to a Curve

On Surface Normal

[On] | [Normal] [At] Surface <id> [Location {options}]

The surface option simply finds a normal vector on a surface. Note that the "on", "normal" and "at" keywords are optional,
as well as the location on the surface. If no location is specified, the normal vector at the center of the surface is found. If
a location is specified, the location is projected to the surface, then the normal vector is found.

draw direction on surface 1
draw direction on surface 1 location 12 0

From Location

[From] {Location {options} | Node|Vertex <id>} [Project] {Location {options} | [Entity]
{Node|Vertex|Curve|Surface} <id>}

The from location option finds a direction that is from one location to another or from a location to an entity. If the second
specification is an entity, the first location is projected to the entity to find the direction.

draw direction from vertex 1 vertex 2
draw direction from location on curve 1 fraction .5 surface 3

Note that when using an entity for the second specification, the Project and Entity keywords are generally optional.
However, it is sometimes necessary to remove ambiguity from the previous location specification. For example, the
following will not parse correctly:

draw direction location on curve 1 distance 2 surface 3

In this case, the location on the curve is parsed as a distance 2.0 from surface 3. Instead, the desired behavior is to find
the location on curve 1 as a distance of 2.0 along the curve from the start of the curve, and project it to surface 3 to find
the direction. The following commands (all equivalent) achieve this behavior:

draw direction location on curve 1 distance 2 project surface 3

draw direction location on curve 1 distance 2 entity surface 3
draw direction location on curve 1 distance 2 project entity surface 3

Rotate

[Rotate {options}]

The rotate option allows you to rotate the direction about another vector. You can string together as many rotations as
necessary. For example:

132

Specifying a Direction

draw direction 1 0 O rotate about z 135 rotate about curve 1 angle 50
Options that can be used with rotate are as follows:

{Ax|X|Ay|Y|Az|Z [Angle] <angle>} | { {[About] | Towards} Direction {options} Angle <val> } [Rotate (options)] [Origin
(location)]

Ax, Ay, Az (or X,Y,Z) angles can be entered in any order. The optional specification of another rotate keyword in the
options indicated that multiple nested rotations are permitted.

Cross
[Cross [With] Direction {options}]

The cross option allows you to find the vector cross product of the direction with another direction.

Reverse

[Reverse]

This keyword simply reverses the direction specification.

Previewing a Direction

Sometimes it is helpful to preview a direction before using it in a command. A direction may be previewed using the Draw
command. The direction options are described above. See Specifying a Location for a list of location options.

Draw Direction {direction_options} [Location (location_options)]

133

mCubit 12.1 User Documentation

Specifying an Axis

Some commands require a specified axis (such as webcut with a cylinder) and it is sometimes advantageous to view an
axis before modifying geometry. An axis is simply a vector with a specified origin. The following options determine an axis
specification:

° Last
. Specify a direction and a location

. Revolve an axis about an axis

Last

Last

The last option recalls the last axis used in an axis command. The last axis does not carry over from CUBIT session to
CUBIT session.

Specify an origin and a vector
{Direction {options} [Origin [Location] {options}] [Length <val>] [Angle <val>]}

To specify an axis simply specify a vector (a direction) and an origin (a location). Notice that the command requires the
axis direction first because the origin defaults to 0 0 0 when not specified. An example of specifying an axis to draw a
location using the swing command is as follows:

draw location 1 0 0 swing about axis direction z ang 45

(final)

,000)

{1,000

Figure 1 - Swinging a point about the z-axis

The location 1 0 0 was swung 45 degrees about an axis defined by a vector in the z direction and an origin at 0 0 0.

Revolve an axis about an axis

[Axis {options} Revolve [About] Axis {options} Angle <val>]

134

Specifying an Axis

To revolve one axis around another use the revolve keyword. The following example revolves the first axis (defined by the
y-axis and origin) around the second axis (defined by the z-axis and origin) by 45 degrees and draws the result.

draw axis direction y revolve axis direction z angle 45

A5"
¥
fina
axis ¥
£(0,0,0)

Figure 2 - Revolving an axis about another axis

Previewing an Axis

Sometimes it is helpful to preview an axis before using it in a command. An axis may be previewed using the Draw
command. The options for previewing an axis are the same as the ones described above.

Draw Axis {options}

135

mCubit 12.1 User Documentation

Specifying a Plane

Some commands require a specified plane (such as sweep curve target) for the command. The following options
determine a plane specification:

. {Location|Vertex|Node} <origin> Direction <normal>

. {Location|Vertex|Node} <origin> Direction <vec on plane> Direction <vec on plane>

. {Location|Vertex|Node} <2 locations> Direction <vector on the plane>

. {Location|Vertex|Node} <3 locations>

. Surface <id> [at location <loc>]

. [Normal To] Curve <id> [loc on curve options]

. Direction <Normal> Coefficient <val>

. Arc Curve <id>

. Linear Curve <id> <id>

° X|Xplane|Yz|Zy|Y|Yplane|Zx|Xz|Z|Zplane|Xy|YX

. Last

The following options apply to all of the plane specifications listed above:

. Offset <val>

. [Move { <xval yval zval> | {Dx|X|Dy|Y|Dz|Z} <val> | Direction {options} [Distance <val>]]
* [[To] Location {options}]

* [Spin [About] Axis {options} Angle <ang>]]

Location and Normal Vector

{Location|Vertex|Node} <origin> Direction <normal>
The first way to specify a plane is to specify a starting point and a direction vector:

draw plane location 1 2 3 direction 0 1 1
draw plane vertex 1 direction tangent at curve 1

Figure 1. Specifying a plane with a location and surface normal

To see the options for location specification, see Specifying a Location. Direction options can be found at Specifying a
Direction.

136

Specifying a Plane

Location and Two Vectors on the Plane

{Location|Vertex|Node} <origin> Direction <vec on plane> Direction <vec on plane>

It is also possible to select an origin point and 2 direction vectors on the plane.

Figure 2. Specifying a plane with a point and 2 in-plane vectors

Two Locations and Vector on the Plane
{Location|Vertex|Node} <2 locations> Direction <vector on the plane>

You can also specify 2 locations and 1 direction on the plane to define the plane.

draw plane vertex 1 2 direction 0 1 1

Figure 3. Specifying 2 locations and 1 direction on the plane

Three Points on the Plane

{Location|Vertex|Node} <3 locations>

A plane can be defined by three locations, vertices, or nodes. The locations are specified using Location Specification.

137

Cubit 12.1 User Documentation

draw plane vertex 12 3
draw plane vertex 1 2 location 345

Figure 4. A plane specified by three points

Plane defined by a Surface

Surface <id> [At Location <loc>]

The surface option uses and existing surface to define the plane. If it is not a planar surface, the optional location specifier
can be used to find the tangent plane of a specific point on the surface.

draw plane surface 1 at location 4 0 0

Figure 5. Specifying a Tangent plane to a Surface

138

Specifying a Plane

Plane Normal to a Curve

[Normal To] Curve <id> [loc on curve options]

The Normal to Curve option allows you to define a plane by using an existing curve. The direction of the curve will define
the surface normal of the new plane. The optional location argument specifies which point to use on the curve if it is not a
straight curve. If no location is specified the plane will originate at the midpoint of the curve. See Specifying a Location on
a Curve for more information on location options.

brick x 10

cylinder radius 3 z 12

subtract body 2 from 1
webcut body 1 xplane

draw plane normal to curve 30

Curve 30

Figure 6. Draw Plane Normal to Curve

Plane Defined by a Non-linear curve
Arc Curve <id>
A plane can be defined by a single curve, provided that curve is not linear.

cylinder height 12 radius 3
draw plane arc curve 2

Plane Defined by a two linear curves
Linear Curve <id> <id>
A plane can be defined by a two linear curves, provided that the curves are not co-linear.

brick x 10
draw plane linear curve 2 3

Normal Vector and Coefficient

Direction <Normal> Coefficient <val>

The direction and coefficient option allows you to specify a plane based on a vector and an offset from the origin. The
Coefficient argument specifies how far to offset the plane from the origin

139

Cubit 12.1 User Documentation

draw plane direction 1 2 3 coefficient 3

Coordinate Plane
X|Xplane|Yz|Zy|Y|Yplane|Zx|Xz|Z|Zplane|Xy|Yx

A plane can be defined from any coordinate plane or combination thereof. The coordinate planes will pass through the
origin unless optional specifiers are included.

draw plane xplane
webcut volume 1 plane xz

Last Location Used
Last

The last option will return the plane most recently used in a command. Last locations do not carry over from CUBIT
session to CUBIT session. The last location defaults to (0, 0, 0) if no location has been used during the session.

The following options apply to all of the plane specification methods described above.
. [Offset <val>]
. [Move {<xval yval zval>| {Dx|X|Dy|Y|Dz|Z} <val> | Direction {options} [Distance <val>]]

. [[To] Location {options}]
. [Spin [About] Axis {options} Angle <ang>]]

A offset value will offset the plane in the direction of the surface normal.

The move option will displace the plane in the specified directions by the specified distance. The direction options are
outlined on Specifying a Direction.

The location option will move the plane to a specified location without rotating it. See Specifying a Location for location
options.

The spin option will rotate the plane around an axis. See Specifying an Axis for axis options.

Previewing a Plane

The ability to preview a plane prior to creating the plane or using it in a command is possible with the following
commands:

Draw Plane (options) [Graphics | {[Intersecting] {Body|Volume} <id_range>] [[Extended] {Percentage|Absolute} <val>]}]
[Color 'color_name']

The options for specifying a plane are described above in the section on Plane Specification. By default, the commands
draw the plane just large enough to intersect the bounding box of the entire model with minimum surface area. Optionally,
you can give a list of bodies to intersect for this calculation. You can also extend the size of the surface by either a
percentage distance or an absolute distance of the minimum area size. The default color is blue, but you can specify a
different one. See the Appendix of the CUBIT Users Guide for available colors in CUBIT.

Preview a Cylindrical Plane

The ability to preview a cylindrical plane is possible with the following command:

Draw Cylinder Radius <val> Axis {x|y|z|Vertex <id_1> Vertex <id_2> | <xyz values>} [Center <x_val> <y_val> <z_val>]
[[Intersecting] Body <id_range>] [Extended Percentage|Absolute <val>] [Color 'color_name']

The cylinder is defined by a radius and the cylinder axis. The axis is specified as a line corresponding to a coordinate axis,

the normal to a specified surface, two arbitrary points, or an arbitrary point and the origin. The center point through which
the cylinder axis passes can also be specified.

140

Specifying a Plane

By default, the commands draw the cylinder just large enough to just intersect the bounding box of the entire model.
Optionally, you can give a list of bodies to intersect for this calculation. You can also extend the length of the cylinder by
either a percentage distance or an absolute distance of the cylinder length. The default color is blue, but you can specify a
different one. See the Appendix of the CUBIT Users Guide for available colors in CUBIT.

141

mCubit 12.1 User Documentation

Drawing a Location, Direction, or Axis

Some commands require you to specify a location on a curve (i.e., webcutting with a plane normal to a curve). This
location can be previewed with the following options:

A fraction along the curve from the start of the curve, or optionally, from a specified vertex on the curve.
A distance along the curve from the start of the curve, or optionally, from a specified vertex on the curve.
An xyz position that is moved to the closest point on the given curve.

The position of a vertex that is moved to the closest point on the given curve.

hON =

Draw Location On Curve <curve id> {Fraction <f> | Distance <d> | Position <xval><yval><zval> | Close_To Vertex
<vertex_id>} [[From] Vertex <vertex_id> (optional for 'Fraction' & 'Distance")]

Some commands require a specified axis (such as webcut with a cylinder) and it is sometimes advantageous to view an
axis before modifying geometry. To draw a preview of an axis use the following command:

Draw Axis {options}

Some commands require a specified location or point (such as create curve spline) and it is sometimes advantages to
view a location before modifying or creating geometry. To draw a preview of a location use the following command:

Draw Location {options}

142

mCubit 12.1 User Documentation

List Model Summary

The following commands print identical summaries of the model: the number of entities of each geometric, mesh, and
special type

List Model

List Totals

The following output is generated from the list model command.
CUBIT> list model

Model Entity Totals:
Geometric Entities:
0 assemblies
0 parts
2 groups
1 bodies
1 volumes
6 surfaces
12 curves
8 vertices
Mesh Entities:
6000 hexes
0 pyramids
0 tets
7876 faces
0 tris
9854 edges
7161 nodes
Special Entities:
1 element blocks
1 sidesets
1 nodesets

Journaled Command: list model

143

»
mCubit 12.1 User Documentation

List Geometry

The following commands list information about the geometry of the model.

List Names [Group|Body|Volume|Surface|Curve|Vertex|All]

List {Group|Body|Volume|Surface|Curve|Vertex} <range> [lds]

List {geom_list} [Geometry|Mesh [Detail]]

List {Group|Body|Volume|Surface|Curve|Vertex} <range> {X|Y|Z}

The first command lists the names in use, and the entity type and id corresponding to each name. Specifying all lists
names for all types; other options list names for a specific entity type. The names for an individual entity can be obtained

by listing just that entity. Sample output from the list names surface command is shown below. This output shows that, for
example, Surface 2 has the name * BackSurface '.

Name __Type__ Id _Propagated_
BackSurface Surface 2 No
BottomSurface Surface 3 No
FrontSurface Surface 1 No
LeftSurface Surface 4 No
RightSurface Surface 5 No
TopSurface Surface 6 No

List Names Example

The second command provides information on the number of entities in the model and their identification numbers. If a
range is given then detailed information is given on each entity in that range, unless the ids option is also given. If the ids
option is used, just a list of ids is printed. This list can be very useful for large models in which several geometry
decomposition operations have performed. Sample output from the list surface command is shown below.

CUBIT> list surface ids
The 6 surface ids are 1 to 6.

CUBIT> list surf ids
The 108 surface ids are 192 to 266, 268 to 271, 273 to 301.

List Surface [range] Ids' Examples

The <range> can be very general using the general entity parsing syntax. Using a <range> gives a brief synopsis of the
local connectivity of the model, e.g. one can list the ids of the surfaces containing vertex 2; as shown in the listing below..
An intermediately detailed synopsis can be obtained by placing the range of entities in a group, then listing the group.

CUBIT> list surface in vertex 2 ids
The 3 entity ids are 1, 5, 6.

CUBIT> group "v2_surfs" equals surface in vertex 2
CUBIT> list v2_surfs Group Entity 'v2_surfs' (Id = 3)
It owns/encloses 3 entities: 3 surfaces.
Owned Entities: Mesh Scheme Interval: Edge
Name Type Id +is meshed Count Size

FrontSurface Surface 1 map+ 1H 0.1

TopSurface Surface 6 map+ 1H 0.1
RightSurface Surface 5 map+ 1H 0.1

Using 'List' for Querying Connectivity.

144

List Geometry

The third command provides detailed information for each of the specific entities. This information includes the entity's
name and id, its meshing scheme and how that scheme was selected, whether it is meshed and other meshing
parameters such as smooth scheme, interval size and count. The entity's connectivity is summarized by a table of the
entity's subentities and a list of the entity's superentities. Also, the nodesets, sidesets, blocks, and groups containing the
entity are listed.

Specifying geometry will additionally list the extent of the entity's geometric bounding box, the geometric size of the
entity, and depending on entity type, other information such as surface normal. See also the list {entities} x command
below. If multiple volumes, surfaces, or curves are selected, it will list the total volume, area, or length of all entities, and
the total geometric bounding box. If multiple volumes are selected, the centroid listed will be the composite centroid of the
all of the volumes.

Specifying mesh will additionally list the number of mesh entities of each type interior to the entity and on bounding
subentities. Mesh detail will list the ids of the mesh entities as well, following the format of the list ids command above.

The fourth command lists the entities sorted by either the X, y, or z coordinate of their geometric center. For example, in a
large, basically cylindrical model centered around z-axis, it is useful to list the surfaces of a volume sorted by z to identify
the source and target sweeping surfaces.

145

a1m1Cubit 12.1 User Documentation

List Mesh

The following commands list mesh entity information.

List {Hex|Face|Edge|Node} <id_range>

List {Hex|Face|Edge|Node} <id_range> IDs

For both of these commands, the range can be very general, following the general entity parsing syntax. The first
command provides detailed information. For an entity, the information includes its id, owning geometry, subentities and

superentities. For a hex, the Exodus Id is also listed. For a node, its coordinates are listed. The second command just lists
the entity ids, and is usually used in conjunction with complex ranges.

146

a1m1Cubit 12.1 User Documentation

List Special Entities

List {special_type} <range>

Special entities include (element) blocks, sidesets and nodesets (representing boundary conditions). Like the list
geometry and list mesh commands, if no range is specified then the number of entities of the given type is summarized.

Otherwise, listing a special entity prints the mesh and geometry it contains.

(Some special entities are of interest mainly to developers and are not described here, e.g. whisker sheets, whisker
hexes, and dicer sheets.)

147

mCubit 12.1 User Documentation

List Cubit Environment

The user may list information about the current CUBIT environment such as message output settings, memory usage, and
graphics settings.

Message Output Settings

There are several major categories of CUBIT messages.

o Info (Information) messages tell the user about normal events, such as the id of a newly created body, or the
completion of a meshing algorithm.

* Warning messages signal unusual events that are potential problems.

. Error messages signal either user error, such as syntax errors, or the failure of some operation, such as the
failure to mesh a surface.

° Echo messages tell the user what was journaled.

. Debug messages tell developers about algorithm progress. There are many types of Debug messages, each
one concentrating on a different aspect of CUBIT.

By default, Info, Warning, Error, and Echo messages are printed, and Debug messages are not printed. Information,
Warning and Debug message printing can be turned on or off (or toggled) with a set command; error messages are
always printed. Debugging output can be redirected to a file. Current message printing settings can be listed.

List {Echo|Info|Errors|Warning|Debug }

Set {Echo]Info|Warning} [On|Off]

[Set] Debug <index> [On|Off]

[Set] Debug <index> File <'filename'>

[Set] Debug <index> Terminal

Message flags can also be set using command line options, e.g. -warning={on|off} and -information={on|off}. Debug
flags can be set on with -debug=<setting>, where <setting> is a comma-separated list of integers or ranges of integers
denoting which flags to turn on. E.g. to set debug flags 1, 3, and 8 to 10 on, the syntax is -debug=1,3,8-10.

In addition to the major categories, there are some special purpose output settings.

[Set] Logging {Off|On File <'filename"> [Resume]}

List Logging

If logging is enabled, all echo, info, warning, and error messages will be output both to the terminal and to the logging file.
The resume option will append to the lodfile, if it exists, instead of writing over it. If the logfile doesn't already exist, it will
be created.

List Journal Title "<title_string>"

The List Journal command lists which types of CUBIT commands will be journaled and the file to which the journaled
commands are being written.

List Title

The List Title command will list the title to be written to the Exodus file. To assign a title to an exodus file, use the Title
command.

148

List Cubit Environment

List Default Block

Set Default Block {ON|off}

The List Default Block command lists which type of geometric entities for which blocks will automatically be generated at
export if no other blocks have been specified. The Set Default Block command will toggle whether these default blocks
are written, or not, during the export operation when no other blocks have been specified.

List Settings

The List Settings command lists the value of all the message flags, journal file and echo settings, as well as additional
information. The first section lists a short description of each debug flag and its current setting. Next come the other

message settings, followed by some flags affecting algorithm behavior.

Sample output

CUBIT> list settings

Debug Flag Settings (flag number, setting, output to, description):

1 OFF terminal Debug Graphics toggle for some debug
options.
2 OFF terminal Whisker weaving information
3 OFF terminal Timing information for 3D Meshing routines.
4 OFF terminal Graphics Debugging (DrawingTool)
5 OFF terminal FastQ debugging
6 OFF terminal Submapping graphics debugging
7 OFF terminal Knife progress whisker weaving information
8 OFF terminal Mapping Face debug / Linear Programming
debug
9 OFF terminal Paver Debugging
echo = On
info = On
journal = On
journal graphics = Off
journal names = On
journal aprepro = On
journal file = 'cubitll.jou'

149

Cubit 12.1 User Documentation

warning = On
logging = Off
recording = Off

keep invalid mesh = Off

default names = Off

default block = Volumes

catch interrupt = On

name replacement character = ' ', suffix character = '@'

Matching Intervals is fast, TRUE;

multiple curves will be fixed per iteration.

Note in rare cases 'slow', FALSE, may produce better meshes.
Match Intervals rounding is FALSE;

intervals will be rounded towards the user-specified intervals.

Graphical Display Information

List View

List view prints the current graphics view and mode parameters; See Graphics Window .

Memory Usage Information

Users are encouraged to use Unix commands such as "top' to check total CUBIT memory use. Developers may check
internal memory usage with the following command:

List Memory [<object type>']

Without an object type, the command prints memory use for all types of objects.

150

mCubit 12.1 User Documentation

ACIS Geometry Kernel

ACIS is a proprietary format developed by Spatial Technologies. CUBIT incorporates the ACIS third party libraries directly
within the program. The ACIS third party libraries are used extensively within CUBIT to import, export and maintain the
underlying geometric representations of the solid model for geometry decomposition and meshing. There are many ways
to get geometry into the ACIS format. ACIS files can be exported directly from several commercial CAD packages,
including SolidWorks, AutoCAD, and HP PE/SolidDesigner. Third party ACIS translators are also available for converting
from native formats such as Pro Engineer. CUBIT also uses the ACIS libraries for importing IGES and STEP format files.

Importing and creating geometry using the ACIS geometric modeling kernel currently provides the widest set of
capabilities within CUBIT. All geometry creation and modification tools have been designed to work directly on the ACIS
representation of the model.

151

http://www.spatial.com/

mCubit 12.1 User Documentation

Granite Geometry Kernel

Granite is a proprietary third party geometry kernel that is incorporated directly into CUBIT. Granite is distributed through
Parametric Technology Corporation, and is the native format of Pro Engineer. Previously, CUBIT could only read Pro/E
files that were translated into ACIS formats, but CUBIT can now import Pro/E files directly. Most of the commands that
work for ACIS geometry will also work for Pro/E, with a few exceptions, as noted below.

Limitations

Geometry Creation

* Create Body from Surfaces: Cannot create body from surfaces with command: “create body surface
<id_range>"

. Sweeping Curves: When creating bodies or surfaces by sweeping curves, all curves must lie in a plane and
sweep direction must be orthogonal to that plane. Granite is able to sweep curves about an axis, creating a
separate body for each swept curve.

. Sweeping Surfaces: When sweeping surfaces, surfaces must be planar and sweep direction must be
orthogonal to the surfaces. Granite is able to sweep planar surfaces about an axis.

. Create Surface from Bounding Curves: To create a surface from a set of bounding curves (“create surface
from curve <id_range>"), all curves must lie in the same plane.

* Creating Offset Curves: Granite does not have the ability to extend offset curves to meet each other when a
complete or incomplete loop of curves is offset. So the following rules apply to the create curve offset
commands:

O Multiple linear curves cannot be offset in one command
O Specified curves must lie in a plane
O Specified curves must form a single connected chain

o Extending Curves: Granite cannot extend multiple linear curves in one command. Granite has no capability to
extend offset curves to meet one another.

. Multi-volume Bodies: Multi-volume bodies cannot be produced in Granite.

. Midsurface Creation: Granite does not support non-planar midsurface creation.
Imprinting

. Surface: Surface-surface intersections do not cause any imprinting to occur. A curve must lie ON a surface to
be imprinted on it.

. Hardlines and Hardpoints: Hardlines and hardpoints cannot be created from an imprint, as granite does not
support hardpoints or hardlines.
. Tolerant Imprinting: Tolerant imprinting is not supported in Granite.

Decomposition

. Webcutting by Sweeping: Sweep webcutting is only supported for planar surfaces that are swept in a direction
normal to their surface. Linear curves can be swept, but only in a direction that is normal to their length.
Sweeping multiple surfaces and curves is not supported. Also, webcutting groups containing volumes and
bodies will only cut the bodies.

. Webcutting with Loops: Webcutting with a loop only succeeds when the loop is planar.
. Tweak: Limited support for tweak command.

Miscellaneous Geometry Options

152

Granite Geometry Kernel

¢ Split Periodic: Split periodic command not supported (Granite does not support periodic geometry.)
. Healing: Healing commands not supported.

* Vertex Removal: Vertex removal not supported.

. Surface Removal: Removing surfaces forming a closed loop is not supported.

. Regularize: Regularize command not supported.

. Validate: Validate command not supported.

. Tweak -Tweak cone command not currently supported.

° Unite -Unite not supported with sheet bodies.

. Scale - When you uniformly scale a granite volume/body, the resultant body does not maintain the ids of the old
one; a totally new body is created.

Attribute Propagation

. During a decomposition operation, if a curve is split down the middle into 2 new identical curves which are
exactly the same as the original curve, attributes that were on the original curve do not get propagated to the
new curves.

Export

The Granite format supports export to the following file formats.

. IGES files

e STEP files

* ACIS SAT files

. Granite files. Note: These files can only be read into CUBIT. Pro/E cannot read these files.

Import

The Granite format supports import of the following file formats

. Pro/E part files

. Pro/E assembly files

i IGES files

* STEP files

. Granite files exported from cubit

* Granite Neutral files (not tested yet)

153

Mesh-Based Geometry

In contrast to the ACIS format, Mesh-Based Geometry (MBG) is not a third party library and has been developed
specifically for use with CUBIT. Most of CUBIT's mesh generation tools require an underlying geometric representation. In
many cases, only the finite element model is available. If this is the case, CUBIT provides the capability to import the finite
element mesh and build a complete boundary representation solid model from the mesh. The solid model can then be
used to make further enhancement to the mesh. While the underlying ACIS geometry representation is typically non-
uniform rational b-splines (NURBS), Mesh-Based Geometry uses a facetted representation. Mesh-Based Geometry can
be generated by importing either an Exodus Il format file or a facet file.

. Creating Mesh-Based Geometry Models

. Improving Mesh-Based Geometry Models for Meshing
* Meshing Mesh-Based Models

. Exporting Mesh-Based Geometry

Many of the same operations that can be done with traditional CAD geometry can also be done with mesh-based
geometry. While all mesh generation operations are available, only some of the geometry operations can be used. For
example, the following can be done with geometric entities that are mesh-based:

. Geometry Transformations
o Merging
. Virtual Geometry Operations

Some operations that are not yet available with mesh-based geometry include:
o Booleans

. Geometry Decomposition
. Geometry Clean-Up

Creating Mesh-Based Geometry Models

Mesh based geometry models can be created in one of two ways

. Importing Exodus I files
. Importing facet files

While both of these methods create geometry suitable for meshing, there are some significant differences:
Exodus Il files

Exodus Il contains a mesh representation that may include 3D elements, 2D elements, 1D elements and even 0D
elements. It may also contain deformation information as well as boundary condition information. The import mesh
geometry command is designed to decipher this information and create a complete solid model, using the mesh faces as
the basis for the surface representations. Exodus Il is most often used when a solid model that has previously been
meshed requires modification or remeshing. Importing an Exodus |l file will generate both geometry and mesh entities,
assigning appropriate ownership of the mesh entities to their geometry owners. Deleting the mesh and remeshing, refining
or smoothing are common operations performed with an Exodus || model.

Facet files

The facet file formats supported by CUBIT are most often generated from processes such as medical imaging,
geotechnical data, graphics facets, or any process that might generate discrete data. Importing a facet file will generate a
surface representation only defined by triangles. If the triangles in the facet file form a complete closed volume, then a
volume suitable for meshing may be generated. In cases where the volume may not completely close or may not be of
sufficient quality, a limited set of tools has been provided. In addition to the standard meshing tools provided in CUBIT, it
is also possible to use the triangle facets themselves as the basis for an FEA mesh.

154

Mesh-Based Geometry

Improving Mesh-Based Geometry Models for Meshing

In many cases, the triangulated representations that are provided from typical imaging processes are not of sufficient
quality to use as geometry representations for mesh generation. As a result, CUBIT provides a limited number of tools to
assist in cleaning up or repairing triangulated representations.

1. Using tolerance on STL files

Stereolithography (STL) files, in particular, can be problematic. The import mechanism for STL provides a tolerance
option to merge near-coincident vertices.

2. Using the stitch option on AVS and facet files

The stitch option on the import facets|avs command provides a way to join triangles that otherwise share near-coincident
vertices and edges. This is useful for combining facet-based surfaces to generate a water-tight model.

3. Using the improve option on facet files.

The improve option on the import facets command will collapse short edges on the boundary of the triangulation. This
option improves the quality of the boundary triangles.

4. Smoothing faceted surfaces.

Individual triangles in a faceted surface representation may be poorly shaped. Just like mesh elements may be smoothed,
facets may also be smoothed in CUBIT using the following command

Smooth <surface_list> Facets [lterations <value>] [Free] [Swap]

To use this command, the surface cannot be meshed. Facet smoothing consists of a simple Laplacian smoothing
algorithm which has additional logic to make sure it does not turn any of the triangles in-side out. It also determines a local
surface tangent plane and projects the triangle vertices to this plane to ensure the volume will not "shrink". The iterations
option can be used to specify the number of Laplacian smoothing operations to perform on each facet vertex (The default
is 1).

The free option can be used to ignore the tangent plane projection. Used too much, the free option can collapse the
model to a point. One of two iterations of this option may be enough to clean up the triangles enough to be used for a
finite element mesh.

The swap option can be used to perform local edge swap operations on the triangulation. The quality of each triangle is
assessed and edges are swapped if the minimum quality of the triangles will improve.

5. Creating a thin offset volume

Offset surfaces may be generated from an existing facet-based surface. This would be used in cases where a thin
membrane-like volume might be required where only a single surface of triangles is provided. This command may be
accomplished by using the standard create body offset command

The result of this command is a single body with an inside and outside surface separated by a small distance which is
generally suitable for tet meshing. This command is currently only useful for small offsets where self-intersections of the
resulting surface would be minimal. It is most useful for bodies that may be initially composed of a single water-tight
surface.

6. Creating volumes from surfaces

A mesh-based geometry volume can be created from a set of closed surfaces. This can be accomplished in the same
manner as the standard create body surface command

Create Body Surface <surface_id_range>

This command is limited to surfaces that match triangles edges and vertices at their boundary. The command will
internally merge the triangles to create a water-tight model that would generally be suitable for tet meshing.

155

Cubit 12.1 User Documentation

Meshing Mesh-Based Models

Mesh-Based models may be meshed just like any other geometry in CUBIT by first setting a scheme, defining a size and
using the mesh command. This standard method of mesh generation can be somewhat time consuming and error prone

for complex facet models with thousands of triangles. CUBIT also provides the option of using the facets themselves as a
surface triangle mesh, or as the input to a tetrahedral mesher. This may be accomplished with one of two options:

Mesh <entity_list> From Facets

This command will generate triangular finite elements for each facet on the surface. If the entity_list is composed of one
or more volumes, then the tetrahedral mesh will automatically fill the interior. This method is useful when further cleanup
and smoothing operations are needed on the triangles after import.

Import Facets <filename> Make_elements

The make_elements on the import facets command will generate the triangular finite elements on the surface at the time
the facets are read and created. This option is useful if no further modifications to the facets are necessary.

Creating triangular finite elements in this manner can greatly speed up the mesh generation process, however it is limited

to non-manifold topology. If the triangular elements are to be used for tetrahedral meshing (i.e. all edges of the
triangulation should be connected to no more than two triangles)

Exporting Mesh-Based Geometry

Mesh-Based geometry models and their mesh may be exported by one of the following methods:

. Exporting to an Exodus Il File
. Exporting to a facet file

Exodus Il

Exporting to an Exodus Il file saves the finite element mesh along with any boundary conditions placed on the model. It
will not save the individual facets that comprise the mesh-based geometry surface representation. Importing an Exodus Il
file saved in this manner will regenerate the surfaces only to the resolution of the saved mesh.

Facet files

CUBIT also provides the option to save just the surface representation to a facet or STL file. The following commands can
be used for saving facet or STL files:

Export Facets ‘filename' <entity_list> [Overwrite]
Export STL [ASCII|Binary] 'filename' <entity_list> [Overwrite]
These commands provide the option of saving specific surfaces or volumes to the facet file. If no entities are provided in

the command, then all surfaces in the model will be exported to the file. The overwrite option forces a file to overwrite any
file of the same name in the current working directory.

156

mCubit 12.1 User Documentation

Importing ACIS Files

The command used to read an ACIS file is:

Import Acis '<acis_filename>' [No_bodies][No_surfaces] [No_curves][No_vertices][Group {'<name>'|<id>}] [Binary|Ascii]
[Show_Each] [Sort] [XML '<xml_filename>'] [Attributes_On] [Separate_Bodies]

The import ACIS command is the primary mechanism for generating geometry within CUBIT. ACIS parts can be
generated and saved with CUBIT, but in most cases are developed within a 3rd party CAD package and exported for use
in CUBIT. CUBIT provides the capability to import ACIS solid models and make modifications to them so they can be
meshed. CUBIT incorporates the commercial ACIS libraries developed and maintained by Spatial Inc. for reading and
writing ACIS format files. IGES and STEP format files can also be imported and exported to/from CUBIT using the
Spatial's libraries.

Import Options

It is possible to include free entities (vertices, curves and surfaces) in the file. The default operation is to read all entities in
the file whether they are included as part of a body or are free. By using any of the options no_bodies, no_surfaces,
no_curves, or no_vertices, the user may exclude certain types of free entities.

The group option of the import command will allow the user to create a group for each set of imported geometry. The
newly created group can later be accessed using the name or id specified with the group option.

The import capability of ACIS files supports both the ASCII format (.sat) and binary format (.sab). When importing, the
filename extension will determine the default file type, be it ASCII or binary. A (.sat) extension will default to ASCII, while a
(.sab) extension will default to binary. If you use a different file extension you can specify the type with the [binary|ascii]
option. Binary files can be significantly faster but are not guaranteed to be upward compatible, nor cross-platform
compatible. Therefore, it is recommended that models be archived in ASCII format.

Normally the numerical IDs of the geometric entities contained in the ACIS model are used directly within CUBIT. The sort
option provides the capability to compress the IDs read from the ACIS file. The sort option does the same thing as the
compress ids sort command, but combines it with the import command to remove a step in the process.

The show_each option is a graphics option that applies to how the volumes are shown as they are imported. If there are
multiple volumes in the file, the graphics display will be updated between each volume during import.

The xml option will read assembly information and other metadata from an XML file in the DART metadata XML format.
See the metadata documentation and the Analyst's Home Page for details.

The attributes_on option will enable attribute support for the file. Attributes include properties like entity color, entity id,
and meshing scheme. Including the attributes option will only affect the current import. The settings will be restored to
their previous settings after importing.

The separate_each option creates a separate body for each volume that is imported, preventing multi-volume bodies
from being imported.

Importing ACIS files at startup

ACIS files can also be imported using the "-solid" option when starting CUBIT from the UNIX command prompt. (See
Execution Command Syntax for details.) Note that the filename must be enclosed in single or double quotes. This
command will create as many bodies within CUBIT as there are bodies in the input file.

See also Exporting ACIS Files.

157

http://www-irn.sandia.gov/analyst
http://www.spatial.com/

mCubit 12.1 User Documentation

Importing FASTQ Files

CUBIT can read a FASTQ file and convert it into an ACIS model:
Import Fastq '<fastq_filename>'
Note that the filename must be enclosed in single or double quotes.

FASTQ is an older, 2d meshing tool; (Blacker 88.) FASTQ files are a series of commands much like a CUBIT journal file.
All FASTQ commands are fully supported except for the "Body" command (it is unnecessary and ignored), the "corn”
(corner) line type, and some of the specialized mapping primitive "Scheme" commands. Standard mapping, paving, and
triangle primitive scheme commands are handled. The pentagon, semicircle, and transition primitives are not handled
directly, but are meshed using the paving scheme. The FASTQ input file may have to be modified if the Scheme
commands use any non-alphabetic characters such as "+, °(*, or *)'. Circular lines with non-constant radius are generated
as a logarithmic decrement spiral in FASTQ; in CUBIT they will be generated as an elliptical curve.

Since a FASTQ file by definition will be defined in a plane, it must be projected or swept to generate three dimensional
geometry. CUBIT supports sweeping options to convert imported FASTQ geometries into volumetric regions.

158

mCubit 12.1 User Documentation

Importing STEP Files

The ACIS STEP translator provides bi-directional functionality for data translation between ACIS and the file format
standard STEP AP203.

STEP AP203 is an international standard which defines a neutral file format for representation of configuration control
design data for a product.

Prior to importing a STEP file for the first time into CUBIT, the STEP toolpath must be set. See Setting up CUBIT to use
STEP tools for a description of how to do this.

The command used to import a STEP file are:

Import Step '<step_filename>' [No_bodies][No_surfaces] [No_curves] [No_vertices] [HEAL|Noheal] [Lodfile [filename']
[Display]] [Show_Each] [Group {'<name>'|<id>}] [Sort] [XML '<xml_filename>']

Import Options

It is possible to include free entities (vertices, curves and surfaces) in the file. The default operation is to read all entities in
the file whether they are included as part of a body or are free. By using any of the options no_bodies, no_surfaces,
no_curves, or no_vertices, the user may exclude certain types of free entities.

As with ACIS file import, you can control which types of entities to read. By default, bodies are automatically healed when
imported - if this causes problems, you can disable this option by using the noheal argument. Also, you can optionally
request a detailed logfile of the conversion process and display it in a text editor.

The logfile option specifies a file where informational messages generated during import of the STEP file will be written.
The display option will display the file.

The show_each option is a graphics option that applies to how the volumes are shown as they are imported. If there are
multiple volumes in the file, the graphics display will be updated between each volume during import.

The group option of the import command will allow the user to create a group for each set of imported geometry. The
newly created group can later be accessed using the name or id specified with the group option.

Normally the numerical IDs of the geometric entities contained in the STEP model are used directly within CUBIT. The
sort option provides the capability to compress the IDs read from the STEP file. The sort option does the same thing as
the compress ids sort command, but combines it with the import command to remove a step in the process.

The xml option will read assembly information and other metadata from an XML file in the DART metadata XML format.
See the metadata documentation and the Analyst's Home Page for details.

Exporting a STEP file from Pro/Engineer

To export a STEP file from Pro/ENGINEER, from the Export STEP Dialog, Press Options.
In the file step_config.pro add the following:

STEP_EXPORT_FORMAT AP203_CD.

Also be sure your export option is set to Solids. If the geometry has problems in CUBIT, you may need to increase the
geometry accuracy in Pro/ENGINEER.

Setting Up CUBIT to Use STEP Tools

In order to use the STEP import and export functionality, Cubit needs to know where the STEP tools are. There are two
ways to do this:

159

Cubit 12.1 User Documentation

1) Set the environment variable CUBIT_STEP_PATH to the correct path.

The correct path will be the path in the ACIS directories which ends in something like:

step/tools/xxx

where xxx would be the type of machine being used. An example path would be (for a Compaq Alpha machine)
Jusr/local/eng_sci/cubit/acis/acis6.2/step/tools/osf

2) At the "CUBIT>" prompt type:

set steptools 'path/to/tools’

Note that the STEP import and export functionality might not be available on all 64-bit platforms.

See also Exporting STEP Files.

160

mCubit 12.1 User Documentation

Importing IGES Files

The ACIS IGES translator provides bi-directional functionality for data translation between ACIS and the IGES (Initial
Graphics Exchange Specification) format.

The commands to import IGES files are:

Import Iges '<iges_filename>' [No_bodies] [No_surfaces] [No_curves] [No_vertices] [Group {'<name>'|<id>}]
[Nofreesurfaces] [Lodfile ['filename'] [Display]] [Show_Each] [Sort]

Import Options
It is possible to include free entities (vertices, curves and surfaces) in the file. Default operation is to read all entities in the
file whether they are included as part of a body or are free. By using any of the options no_bodies, no_surfaces,

no_curves, or no_vertices, the user may exclude certain types of free entities.

The group option of the import command will allow the user to create a group for each set of imported geometry. The
newly created group can later be accessed using the name or id specified with the group option.

The nofreesurfaces option will automatically convert free surfaces to bodies. By default this option is off.

Including the logfile option allows the user to specify a filename where informational messages generated during import
of the IGES file will be written.

The show_each option is a graphics option that applies to how the volumes are shown as they are imported. If there are
multiple volumes in the file, the graphics display will be updated between each volume during import.

Normally the numerical IDs of the geometric entities contained in the ACIS model are used directly within CUBIT. The
sort option provides the capability to compress the IDs read from the ACIS file. The sort option does the same thing as
the compress ids sort command, but combines it with the import command to remove a step in the process.

Note that the IGES import and export functionality might not be available on all 64-bit platforms.

See also Exporting IGES Files.

161

a1mICubit 12.1 User Documentation

Importing Facet Files

CUBIT provides the capability to import a model composed of facets to create geometry. The command to import facets
from afile is:

Import [Facets|AVS|STL] "<filename>" [Feature_Angle] [LINEAR||Spline] [MERGE|No_merge] [Make_elements] [Stitch]
[Improve]

Facets are simply triangles that have been stitched together to form surfaces. Faceted geometry representations are
commonly used for graphics, bio-medical, geotechnical and many other applications that output a discrete surface
representation. Upon import, the resulting geometry representation is Mesh-Based Geometry. Figure 1. shows an
example of a faceted model and the resulting geometry created in CUBIT.

Figure 1. Example of faceted model and the resulting solid model created in CUBIT from the facets.

For convenience, the import facet command currently supports three different formats, facet, AVS and STL

. Facet format: The facet file format is a simple ASCII file that contains vertex coordinates and connectivities.
The facet file format is described below.

. AVS format: The AVS format is a general geometry format that can support a variety of polygonal shapes. In
CUBIT's implementation of the AVS import, it will support only triangles.

162

Importing Facet Files

. STL format: Perhaps the most common format in the industry is Stereolithography (STL). CUBIT supports both
ASCII and binary forms of the STL format. While the STL format is adequate for graphics and visualization, it
can be problematic for geometry applications such as CUBIT. Each triangle in the STL format is represented
independently. This means that multiple definitions of a single vertex are included in the file. CUBIT will attempt
to merge duplicate vertices to form a water-tight surface. In cases where the vertex locations may not
correspond exactly, an optional tolerance argument may be used on the import command. The tolerance
option is used only for STL format files.

Facet File Format

The format for the ASCII facet file is as follows

nm

id1 x1y1z1
id2 x2 y2 z2
id3 x3 y3 z3

idn xn yn zn

fid1 id<1> id<2> id<3> [id<4>]
fid2 id<1> id<2> id<3> [id<4>]
fid3 id<1> id<2> id<3> [id<4>]

%idm id<1> id<2> id<3> [id<4>]
Where:

n = number of vertices

m = number of facet

id<i> = vertex ID if vertex i

X<i> y<i> z<i> = location of vertex i
fid<j> = facet ID if facet j

id<1> id<2> id<3> = IDs of facet vertices
[id<4>] = optional fourth vertex for quads

As noted above, the facets can be either quadrilaterals or triangles. Upon import, the facets serve as the underlying
representation for the geometry. By default, the facets are not visible once the geometry has been imported. To view the
facets, use the following command:

draw surf <id range> facets

Feature Angle

The feature angle option is used to specify the angle at which surfaces will be split by a curve or where curves will be
split by a vertex. 180 degrees will generate a surface for every facet, while O degrees will define a single, unbroken
surface from the shell of the mesh. The default angle is 135 degrees. This feature is identical to the feature angle option
available when importing Exodus |l files.

Smooth Curves and Surfaces

This option permits the use of a higher order approximation of the surface when remeshing/refining the resulting
geometry. Default is to use the original facets themselves as the curve and surface geometry representation. If the facet
model to be imported is to represent geometry with curved surfaces, it may be useful to apply this option. If the Spline
option is selected, it will use a 4th order B-Spline approximation to the surface [Walton,96]. More information on using
smooth approximation of the facets is available in Importing an Exodus |l File.

Merge

This option allows the user to either merge or not merge the resulting surfaces. The default option is to merge adjacent
surfaces. This results in non-manifold topology, where neighboring surfaces share common curves. The no_merge
option, adjacent surfaces will generate distinct/separate curves.

163

Cubit 12.1 User Documentation

Make elements

This option creates mesh elements from each of the facets on the facet surface.

Stitch

The stitch option is used with the facet or avs format files to try to merge vertices and triangles that are close. Figure 2
shows an example of where this might be employed. The model on the left contains facets that are not connected
between the red and blue groups. In this case, the surfaces will not be water-tight, even though the vertices on the
boundary between the two groups may be coincident. The stitch option attempts to eliminate the extra edge and vertex
between the groups to form the model on the right. This option can be useful when importing facet files for 3D meshing.
CUBIT's 3D meshing algorithms require a water-tight (closed) set of surfaces.

Figure 2. Example use of the stitch option on import.

Improve

The improve option will collapse short edges on the boundary of the triangulation that are less than 30% the length of the
average edge length in the model. In some cases, short edges are the result of discrete boolean operations on the
triangulation which may result in edges that are of negligible length. This option is particularly useful for boundaries where
multiple surfaces come together at an edge. Figure 3. shows an example of where the improve option improved the
quality of the triangles at the boundary. This option is especially useful if the facets themselves will be used for the FEA
mesh.

Triangles near a boundary that have not been The same set of triangles where improve option
used the improve option has collapsed edges

Figure 3. Example use of the improve option

164

Importing Facet Files

165

mCubit 12.1 User Documentation

Importing Granite Files

Granite files consist of granite models with the (*.g) file extension. Granite models may be imported directly into CUBIT
using the following command.

Import Granite '<granite_filename>' [no_assembly_level_features]

When importing a granite file, the "set geometry engine granite" command will automatically be issued to set the
appropriate geometry kernel. Assembly level features will be imported unless no_assembly_level_features is included in
the command.

The Granite kernel can also import the following geometry types:

. Pro/E part files (*.prt)

. Pro/E assembly files (*.asm)

¢ IGESfiles

* STEP files

° Granite files exported from cubit

. Granite Neutral files (not tested yet)

166

»
mCubit 12.1 User Documentation

Creating Vertices

The basic commands available for creating new vertices directly in CUBIT are:

. XYZ location

. On Curve - Fraction
* On Curve - General
. From Vertex

* AtArc

. At Intersection

1. XYZ location: The simplest form of this command is to specify the XYZ location of the vertex. It can also be created

lying on a curve or surface in the geometric model by specifying the curve or surface id; the position of the vertex will be
the point on the specified entity which is closest to the position specified on the command. With all of these commands,
the user is able to specify the color of the vertex.

Create Vertex <x><y><z> [On [Curve | Surface] <id>] [Color <color_name>]

2. On Curve - Fraction: A vertex can be positioned a certain fraction of the arc length along a curve using the second
form of the command.

Create Vertex On Curve <id> Fraction <0.0 to 1.0> [Color <color_name>]
Vertex 3 in the following example was created with this command:

create vertex on curve 1 fraction 0.25 from vertex 1

Figure 1. Create Vertex a Fraction of the length of a Curve

3. On Curve - General: A more general purpose form of the command is also available for creating vertices on curves:

Create Vertex On Curve <id_list> { MIDPOINT | Start | End | Fraction <val 0.0 to 1.0> [From Vertex <id> | Start|End] |
Distance <val> [From {Vertex|Curve|Surface} <id> | Start|End] | {{Close_To|At} Location {options} | Position
<xval><yval><zval>|{Node|Vertex} <id>} | Extrema [Direction] {options} [Direction {options}] [Direction {options}] |
Segment <num_segs> | Crossing {Curve|Surface} <id_list> [Bounded|Near] } [Color <color_name>]

It allows the vertex to be created at a fractional distance along the curve, at an actual distance from one of the curves
ends, at the closest location to an xyz position or another vertex, or at a specified distance from a vertex, curve or surface.
You can also preview the location first with the command Draw Location On Curve (where the rest of the command is
identical to the Create Vertex form).

167

Cubit 12.1 User Documentation

4. From Vertex: Create a vertex from an existing vertex.
Create Vertex from Vertex <id_list> [On {Curve|Surface} <id>] [Color <color_name>]

If 'on curve|surface' option is used, the vertex is positioned on that curve or surface. When the 'on curvel|surface' is not
used, the new vertex is positioned on the existing vertex.

5. At Arc: Another form simply creates vertices at arc or circle centers.

Create Vertex Center Curve <id_list> [Color <color_name>]

6: At Intersection: The last form creates vertices at the intersection of two curves. If the bounded qualifier is used, the
vertices are limited to lie on the curves, otherwise the extensions of the curves are also used to calculate the
intersections. The near option is only valid for straight lines, where the closest point on each curve is created if they do not

actually intersect (resulting in two new vertices).

Create Vertex Atlntersection Curve <id1> <id2> [Bounded] [Near] [Color <color_name>]

168

Creating Curves

Curves are created by specifying the bounding lower-order topology (i.e. the vertices) and the geometry (shape) of the
curve (along with any parameters necessary for that geometry). There are several forms of this command:

e Straight

. Parabolic, Circular, Ellipse
* Spline

* Copy

° Arc Three

N Arc Center Vertex

. From Vertex Onto Curve
e Offset

. From Mesh Edges
. Close_To

. Surface Intersection
. Projecting onto Surface

1. Straight: The first form of the command creates a straight line or a line lying on the specified surface. If a surface is
used, the curve will lie on that surface but will not be associated with the surface's topology.

Create Curve [Vertex] <vertex_id> [Vertex] <vertex_id> [On Surface <surface_id>]
Straight curves can be created using an axis. The syntax is as follows:
Create Curve Axis {options}

The length of the axis must be specified. Go to Location, Direction, and Axis Specification to see the axis command
description.

Additionally, several connected straight curves can be created with a single command. The syntax for the polyline
command is as follows:

Create Curve Polyline Location {options} Location {options} ...

Notice that two or more locations are used to define a polyline. See Location, Direction, and Axis Specification for the
location command description.

2. Parabolic, Circular, Ellipse: The parabolic option creates a parabolic arc which goes through the three vertices. The
circular and ellipse options create circular and elliptical curves respectively that go through the first and last vertices.

Create Curve [Vertex <vertex_id> [Vertex] <vertex_id> [[Vertex] <vertex_id> [Parabolic|Circular|ELLIPSE
[first angle <val=0> last angle <val=90>]]]

If ‘ellipse’ is specified, Cubit will create an ellipse assuming the vectors between vertices (1 and 3) and (2 and 3) are
orthogonal. v1-v3 and v2-v3 define the major and minor axes of the ellipse and v3 defines the center point. These vectors
should be at 90 degrees. If not, Cubit will issue a warning indicating the vertices are not sufficient to create an ellipse and
will then default to creating a spiral.

The angle options will specify what portion of the ellipse to create. If none are specified, first angle will default to 0 and
last angle to 90 and the ellipse will go from vertex 1 to vertex 2; if the vertices are free vertices they will be consumed in
the ellipse creation. First angle tells Cubit where to start the ellipse -- the angle from the first axis (v1 - v3) specified.
Last angle tells Cubit where to end the ellipse -- the angle from the first axis. The angle follows the right-hand rule about
the normal defined by (v1 - v3) X (v2 - v3).

169

Cubit 12.1 User Documentation

3. Spline: The spline form of the command creates a spline curve that goes through the all input vertices or locations. To
create a curve from a list of vertices use the syntax shown below. The delete option will remove all of the intermediate
vertices used to create the spline leaving only the end vertices.

Create Curve [Vertex] <vertex_id_list> [Spline] [Delete]

Additionally, spline curves can be created by inputting a list of locations. Where the spline will pass through all of the
specified locations. The syntax is shown below:

Create Curve Spline {List of locations}
See Location, Direction, and Axis Specification to view the location specification syntax.

4. Copy: This command actually copies the geometric definition in the specified curve to the newly created curve. The
new curve is free floating.

Create Curve From Curve <curve_id>
5. Combine Existing Curves: This command creates a new curve from a connected chain of existing ACIS curves.

5. Arc Three: The following command creates an arc either through 3 vertices or tangent to 3 curves. The Full qualifier
will cause a complete circle to be created.

Create Curve Arc Three {Vertex|Curve} <id_list> [Full]
6. Arc Center Vertex: The next form of the command creates an arc using the center of the arc and 2 points on the arc.
The arc will always have a radius at a distance from the center to the first point, unless the Radius value is given. Again,

the Full qualifier will cause a complete circle to be created.

Create Curve Arc Center Vertex <center_id> <end1_id> <end2_id> [Radius <value>] [Full] [Normal <x> <y> <z>
***Needed when points colinear]

Note: Requires 3 Vertices - first is center, other two are on the arc
7. From Vertex Onto Curve: The following command will create a curve from a vertex onto a specified position along a
curve. If none of the optional parameters are given, the location on the curve is calculated as using the shortest distance

from the start vertex to the curve (i.e., the new curve will be normal to the existing curve).

Create Curve From Vertex <vertex_id> Onto Curve <curve_id> [Fraction <f> | Distance <d> | Position <xval><yval><zval>
| Close_To Vertex <vertex_id> [[From] Vertex <vertex_id> (optional for 'Fraction' & 'Distance')]] [On Surface <surface_id>]

Note: Default = Normal to the Curve

8. Offset: The next command creates curves offset at a specified distance from a planar chain of curves. The direction
vector is only needed if a single straight curve is given. The offset curves are trimmed or extended so that no overlaps or
gaps exist between them. If the curves need to be extended the extension type can be Rounded like arcs, Extended
tangentially (the default -straight lines are extended as straight lines and arcs are extended as arcs), or extended
naturally.

Create Curve Offset Curve <id_list> Distance <val> [Direction <x> <y> <z>] [Rounded|EXTENDED|Natural]
Note: Direction is optional for offsets of individual straight curves only
In all cases, the specified vertices are not used directly but rather their positions are used to create new vertices.

9. From Mesh Edges: This commands creates a curve from an existing mesh given a starting node and an adjacent
edge.

Create Curve From Mesh Node <id> Edge <id> [Length <val>]
The adjacent edge indicates which direction to propagate the curve.
The curve will be composed of mesh edges up to the specified length.

If no length is specified the curve will propagate as far as the boundary of the mesh. Figure 1 shows a example of a curve
generated from the mesh.

170

Creating Curves

A
A XS
XY
X)
V49
A
Q
VAR

== ==
s = =]
SEARE -
<] D<A
gl
] e])
B .1...._-,5.!}!5‘- >
.l%ﬁﬁﬁbw
S

Figure 1. Example of curve created from mesh

The underlying geometry kernel used for this command is Mesh-Based geometry. The new curve will also be meshed with

the edges it was propagated through. A related command for assigning mesh edges directly to a mesh block is the Rebar
command. See Element Block Specification for more details.

Note: Full hexes or full tets must be used to propagate the curves through the interior of volume.

10. Close_To This option takes two geometric entities and creates the shortest possible curve between the two entities at
the location where the two entities are the closest. The two entities may NOT intersect. If two vertices are given, the
command will create a straight line between the two vertices.

Create Curve Close_To {Vertex|Curve|Surface|Volume|Body} <id_1> {Vertex|Curve|Surface|Volume|Body} <id_2>

11. Surface Intersection The following command creates curves at surface intersections. Multiple curves can be created
from a single command.

Create Curve Intersecting Surface <id_list>

12. Projecting onto a Surface The project command allows you to make an imprint of a surface or set of curves onto
another surface. The command syntax is as follows:

Project Curve <id_list> Onto Surface <surface_id> [Imprint [Keepcurve] [Keepbody]] [Trim]
Project Surface <id_list> Onto Surface <surface_id> [Imprint [Keepcurve] [Keepbody]]

The command takes a list of curves or surfaces, and a projection surface. If a list of curves is given, the result will be the
creation of a set of free curves on top of the projection surface. If a list of surfaces is given, the result will be the same as
selecting the curves that bound the surface (i.e. a group of free curves on the projecting surface).

The imprint option will imprint the resulting projected curves onto the projection surface. If this option is NOT given, the
new curves will lie coincident to the surface, but will not be part of the surface. Imprinting changes the topology of the
projection surface. Keepcurve option retains the new curves as both free curves, and curves in the projection surface. The

keepbody option retains the original body under the new imprinted body. When projecting curves, the trim option will
cause the curve to be trimmed to the target surface.

171

mCubit 12.1 User Documentation

Creating Surfaces

There are two major ways to create surfaces in CUBIT. First, surfaces can be created in CUBIT by fitting an analytic or
spline surface over a set of bounding curves. In this case, the curves must form a closed loop, and only one loop of
curves may be supplied. The second method, is by sweeping a curve about an axis, along a vector, or along another
curve. The result of these surface creation commands is a "sheet body" or a body that has zero measurable volume (it
does however have a volume entity). This body may be decomposed with booleans and special webcutting commands or
it may be used as a tool to decompose other bodies. Booleans can be used to cut holes out of these surfaces.

The following options may be used for creating a surface in CUBIT.

. Bounding Curves

. Bounding Vertices or Nodes
° m

. Extended Surface

. Planar Surface

. Net Surface

. Offset
. Skinning

. Sweeping of Curves
. Midsurface

. Weld Profile

. Meshed Entities

1. Bounding Curves: The first form of this command produces an analytic or spline surface fit to cover the bounding
curves.

Create Surface Curve <curve_id_1> <curve_id_2> <curve_id_3>...

Another version of this command creates a surface from a set of bounding curves that all lie on one surface. If the curves
are selected they must lie on the surface, and they must create a closed loop. The On Surface option forces the surface
to match the geometry of the underlying surface exactly.

Create Surface Curve <id_list> On Surface <surface_id>

2. Bounding Vertices or Nodes: The second form of this command uses vertices to fit an analytic spline surface. The
On Surface option creates the surface from a set of nodes and vertices that all lie on one surface and restrains the
surface to match the geometry of the underlying surface. The project option will project the nodes or vertices to the
specified surface.

Create Surface [Node|Vertex| <id_list> [On Surface <surface_id> {Project}]

3. Copy: The next form creates a surface using the same geometric description of the specified surface. The new surface
will be a stand-alone sheet body that is geometrically identical to the user supplied surface.

Create Surface From Surface <surface_id>

4. Extended Surface: The fourth form of the command creates a surface that is extended from a given surface or list of
surfaces. The specified surface's geometry is examined and extended out "infinitely" relative to the current model in
CUBIT (i.e. extended to just beyond the bounding box of the entire model). The given surfaces are extended as shown in
the table.

Create Surface Extended From Surface <surface_id>

172

Creating Surfaces

Table 1. Surface Extension Results

Surface Type Resulting Extended Surface

Spherical Shell of Full Sphere

Planar Plane of infinite size relative to model

Toroidal Shell of Full Torus

Conical, cone, cylinder... Shell of outside conic axially aligned with given conic of infinite height

relative to model

Spline Surface is extended to extents of the spline definition. This may not be
any further than the surface itself, so caution should be used here.

Multiple surfaces can be offset at the same time to form a sheet body, by using the Create Sheet Extended from Surface
command.

5. Planar Surface: The following commands create planar surfaces. The first passes a plane through 3 vertices, the
second uses an existing plane, the third creates a plane normal to one of the global axes, and the fourth creates a plane
normal to the tangent of a curve at a location along the curve. By default, the commands create the surface just large
enough to intersect the bounding box of the entire model with minimum surface area. Optionally, you can give a list of
bodies to intersect for this calculation. You can also extend the size of the surface by either a percentage distance or an
absolute distance of the minimum area size. The plane can be previewed with the command Draw Plane [with]... (where
the rest of the command is the same as that to create the surface).

Create Planar Surface [With] Plane Vertex <v1_id> [Vertex] <v2_id> [Vertex] <v3_id> [Intersecting] Body <id_range>]
[Extended Percentage|Absolute <val>]

Create Planar Surface [With] Plane Surface <surface_id> [Intersecting] Body <id_range>] [Extended Percentage|Absolute
<val>]

Create Planar Surface [With] Plane {Xplane|Yplane|Zplane} [Offset <val>] [Intersecting] Body <id_range>] [Extended
Percentage|Absolute <val>]

Create Planar Surface [With] Plane Normal To Curve <curve_id>{Fraction <f>| Distance <d> | Position
<xval><yval><zval> | Close_to vertex <vertex_id>} [[From] Vertex <vertex_id> (optional for ‘fraction' & 'distance’)]
[Intersecting] Body <id_range>] [Extended Percentage|Absolute <val>]

6. Net Surface: Net surfaces can be created with two different commands. A net surface passes through a set of curves
in the u-direction and a set of curves in the v-direction (these u and v curves would looked like a mapped mesh). The first
form of the command uses curves to create the net surface. The curves must pass within tolerance of each other to work.
The second form uses a mapped mesh to create the surface. The mapped mesh can be of a single surface or a collection
of mapped or submapped surfaces that form a logical rectangle. By default net surfaces are healed to take advantage of
any possible internal simplification.

Create Surface Net U Curve <id_list> V Curve <id_list> [Tolerance <value>] [HEAL|Noheal]

Create Surface Net [From] [Mapped] Surface <id_list> [Tolerance <value>] [HEAL|Noheal]

A suggested geometry cleanup method is to use a virtual composite surface to map mesh a set of complicated surfaces
then create a net surface from this mesh. Then the original surfaces can be removed with the noextend option and the
new net surface combined back onto the body.

7. Offset: The following command creates surfaces offset from existing surfaces at the specified distances.

Create Surface Offset [From] Surface <id_list> Distance <val>

The surface offset command will only translate the existing surfaces, without extending or trimming them. An alternate
form of the command for sheet bodies will maintain connections between surface by extending or trimming as they are

offset, shown in Figure 1. On the left, the surfaces are offset using the surface offset command. On the left, the surface is
created by using the "sheet" version of the command.

173

Cubit 12.1 User Documentation

Figure 1. Offsetting surfaces to form individual surfaces or sheet bodies

8. Skinning: The following command creates a skin surface from a list of curves. An example of a skin surface is to
create a surface through a set of parallel lines.

Create Surface Skin Curve <id_list>
9. Sweeping of Curves: A curve or a set of curves can be swept along a path to create new surfaces. The path may be
specified as an axis and angle, a vector and distance, by indicating another curve or set of contiguous curves, or by

specifying a target plane. The following commands show the options available:

Sweep Curve <curve_id_range> { Axis <xpoint ypoint zpoint xvector yvector zvector> | Xaxis | Yaxis | Zaxis } Angle
<degrees> [Steps <Number_of sweep_steps>] [Draft_angle <degrees>] [Draft_type <integer>] [Make_solid] [Rigid]

Sweep Curve <curve_id_range> Vector <xvector yvector zvector> [Distance <distance>] [Draft_angle <degrees>]
[Draft_type <integer>] [Rigid]

Sweep Curve <curve_id_range> Along Curve <refcurve_id_range> [Draft_angle <degrees>] [Draft_type <integer>] [Rigid]
Sweep Curve <curve_id_range> Target Plane <options>

Sweep Curve <curve_id_range> Target {Volume|Body} <id> Direction {options} [Plane <options>] [Unite]

In the first command, the steps options provides a way of faceting the sweep, so instead of a smooth round sweep, there
are facets to the surface. The make_solid option closes the newly-created surface to the axis, so that a solid is created

instead of a surface.

The sweep curve target plane command sweeps a curve until it hits a target plane. The options for the target plane are
described under Specifying a Plane.

The last command sweeps a curve to a target volume or body and can only be used on sheet bodies. Use the direction
keyword to specify the sweep direction and the plane keyword to specify a stopping plane. The unite keyword will unite
the sheet bodies after sweeping

The other options are as follows:

draft_angle: determines how much drafting in of the surface is desired

draft_type:

0 => extended (draws two straight tangent lines from the ends of each segment until they intersect)

1 => rounded (create rounded corner between segments)

2 => natural (extends the shapes along their natural curve) ***

rigid: normally the curve will rotate to maintain its original orientation to the sweep path. The rigid option disallows this
rotation.

174

Creating Surfaces

10. Midsurface: Multisurfaces may be created midway between pairs of surfaces using the following command:
Create Midsurface {Body|Volume} <id> Surface <id11> <id12> ... <idN1> <idN2>
where N denotes the number of pairs of surfaces. An even number of surfaces must be specified, and the command will

group them by pairs in the order in which they are provided. The resulting surface will be trimmed by the specified body or
volume <id>. This replaces the Create Midplane command in previous versions of CUBIT.

Figure 2. Multisurface created with the Create Midsurface command

175

Cubit 12.1 User Documentation

Figure 3. Midsurface created from 2 pairs of cylindrical surfaces

Midsufaces can also be extracted without surface pair specification if the resulting surface is a single sheet of surfaces (no
T intersections). The following is the command syntax for automatic midsurface extraction:

Create Midsurface {Body|Volume} <id_range> Auto [Delete] [Transparent] [Thickness] [Limit <lower_bound>
<upper_bound>] [Preview]

Figure 4 shows a simple auto midsurface example. The command for the example is:

create midsurface volume 1 auto delete

Figure 4. Midsurface created from a volume
The command option descriptions are listed below.

Auto enables the automatic mid-surface algorithm. Turning Auto off requires the user to specify a single surface pair to
create a mid-surface.

Transparent shows the successfully midsurfaced volumes as transparent in the graphics display
Thickness applies a 2D property to the created mid-surface geometry.

Limit search range gives the algorithm a range to find surface pairs within.

176

Creating Surfaces

11. Weld Profile: Surfaces may be created by specifying a weld profile using the following command:

Create Surface Weld [Root] Location {options} Weld Surface <id_list> Length <val> [<val2>]

Weld surfaces can be used to create a simulated welded joint by sweeping the surface along the root curve and uniting
the new body to the model. An example of the command is illustrated below. For a detailed description of the location

specifier see Location Direction, and Axis Specification.

create surface weld root location vertex 25 weld surface 13 14 length 2

W'eld Surface

Foot Location
Yertex 25 Length 2

Figure 5. Weld Profile surface with length and root specifications

12. Creating A Surface From Mesh Entities: Surfaces may be created from the boundaries of meshed volumes,
surfaces, and/or from individual quadrilateral mesh elements. The individual option makes it so you can enter multiple
surfaces at once, and not have them merged together into a larger surface, but instead retain their own original
boundaries. The optional tolerance value allows the user to specify a tolerance to which the resulting surface should be fit.
The default value is 0.001. If surface creation fails, increasing the tolerance value can help.

Create Acis [From] {Surface <id_range> | Volume <id_range> | Face < id_range> [Individual]} [Tolerance <value>]

Figure 6. Acis Surface created from a Set of Quadrilaterals

177

Cubit 12.1 User Documentation

178

Creating Bodies

Currently, CUBIT can create volumes:

from surfaces by sweeping a single surface into a 3D solid,
by offsetting an existing volume,

by extending one or more surfaces or sheet bodies

by sweeping a curve around an axis,

by stitching together surfaces that can form a closed volume,
by lofting from one surface to another surface, or

by thickening a surface body.

Nooakrwh =

Sweeping of planar surfaces, belonging either to two- or three-dimensional bodies, is allowed, and some non-planar faces
can be swept successfully, although not all are supported at this time. The following methods for generating volumes are
described:

. Sweep Surface Along Vector
. Sweep Surface About Axis

* Sweep Surface Along Curve
. Sweep Surface Perpendicular
. Sweep Surface to a Volume
¢ Offset

. Sheet extended from surface
* Sweep Curve About Axis

. Stitch Surfaces Together

. Loft Surfaces Together

. Thicken Surfaces

. Sweep Surface

There are five forms of the sweep command; the syntax and details for each are given below. In the first four forms, the
optional draft_angle parameter specifies the angle at which the lateral faces of the swept solid will be inclined to the
sweep direction. It can also be described as the angle at which the profile expands or contracts as it is swept. The default
value is 0.0. The optional draft_type parameter is an ACIS-related parameter and specifies what should be done to the
corners of the swept solid when a non-zero draft angle is specified. A value of 0 is the default value and implies an
extended treatment of the corners. A value of 1 is also valid and implies a rounded (blended) treatment of the corners.

The sweep operations have been designed to produce valid solids of positive volume, even though the underlying solid
modeling kernel library that actually executes the operation, ACIS, allows the generation of solids of negative volume (i.e.,
voids) using a sweep.

1. Sweep Surface Along Vector: Sweeps a surface a specified distance along a specified vector. Specifying the distance
of the sweep is optional; if this parameter is not provided, the face is swept a distance equal to the length of the specified
vector.

Sweep Surface {<surface_id_range>|All} Vector <x_vector y_vector z_vector> [Distance <distance_value>] [Draft_angle
<degrees>] [Draft_type <0|1>]

2. Sweep Surface About Axis: Sweeps a surface about a specified vector or axis through a specified angle. The axis of
revolution is specified using either a starting point and a vector, or by a coordinate axis. This axis must lie in the plane of
the surfaces being swept. The steps parameter defaults to a value of 0 which creates a circular sweep path. If a positive,
non-zero value (say, n) is specified, then the sweep path consists of a series of n linear segments, each subtending an
angle of [(sweep_angle) / (steps-1)] at the axis of revolution.

Sweep Surface {<surface_id_range>|All} Axis {<xpoint ypoint zpoint xvector yvector zvector>|Xaxis|Yaxis|Zaxis} Angle
<degrees> [Steps <number_of sweep_steps>] [Draft_angle <degrees>] [Draft_type <0|1>]

179

Cubit 12.1 User Documentation

i Specifying multiple surfaces that belong to the same body will not work as expected, as ACIS performs the
sweep operation in place. Hence, if a range of surfaces is provided, they ought to each belong to different bodies.

3. Sweep Surface Along Curve: This command allows the user to sweep a planar surface along a curve:
Sweep Surface <surface_id_range> Along Curve <curve_id> [Draft_angle <degrees>] [Draft_type <0 | 1| 2>]

One of the ends of the curve must fall in the plane of the surface and the curve cannot be tangential to the surface. Sweep
along curve also supports an additional draft type "2" which implies a "natural" extension of the corners from their curves.

4. Sweep Surface Perpendicular: This command allows the user to sweep a planar surface perpendicular to the surface:

Sweep Surface <surface_id_range> Perpendicular Distance <distance> [Switchside] [Draft_angle <degrees>] [Draft_type
<integer>]

The sweeping plane must be planar in order to determine the sweep direction. The switchside option will reverse the
direction of the sweep.

5. Sweep Surface to a Volume: This command allows users to sweep a surface to a volume.
Sweep Surface <surface_id_range> Target {Volume|Body} <id> [Direction {options}] [Plane {options}]

The direction keyword can be used to control the direction of sweep. Without it, Cubit will determine the sweep direction
(usually normal to the sweeping surface). The plane option can be used to define a stopping plane.

6. Offset: The following command creates a body offset from another body or set of surfaces at the specified distance.
The new surfaces are extended or trimmed appropriately. A positive distance results in a larger body; a negative distance
in a smaller body.

Create Body Offset [From] Body <id_range> Distance <value>

Create Sheet Offset From Surface <id_list> Offset <val> [Surface <id_list> Offset <val>] [Surface <id_list> Offset <val> ...]
[Preview]

Using the second form of the command, the sheet body can be created from a list of surfaces, and the surfaces may
offset by different distances. This command currently requires the original surfaces to be on solid bodies.

This option is also available for limited cases for facet-based surfaces.

7. Sheet Extended from Surface: The following command creates a body offset from another body or set of surfaces at
the specified distance. The new surfaces are extended or trimmed appropriately. A positive distance results in a larger
body; a negative distance in a smaller body.

Create Sheet Extended From Surface <id_list> [Intersecting <entity_list>] [Extended {Percentage|Absolute} <val>]
[Preview]

This command allows multiple surfaces to be extended at the same time. Optionally, you can give a list of bodies to
intersect for this calculation. You can also extend the size of the surface by either a percentage distance or an absolute
distance of the minimum area size. The plane can be previewed with the preview option. Figure 1 shows a set of surfaces
being created using the extended absolute option.

180

Creating Bodies

Figure 1. Sheet created from extending multiple surfaces

8. Sweep Curve About Axis: Sweeps a curve or set of curves about a given axis through a specified angle. The axis is
specified the same as in the Sweep Surface About Axis command. The steps, draft_angle, and draft_type options are the
same as are described above. To create the solid, the make_solid option must be specified, otherwise a surface will be
created, rather than a solid. If the rigid option is specified, then the curve or set of curves will remain oriented as originally
oriented, rather than rotating about the axis.

Sweep Curve <curve_id_range> {Axis <xpoint ypoint zpoint xvector yvector zvector>|Xaxis|Yaxis|Zaxis} Angle <degrees>
[Steps <Number_of_sweep_steps>] [Draft_angle <degrees>] [Draft_type <integer>] [Make_solid] [Rigid]

9. Stitch Surfaces Together: A body can be created from various surfaces that form a closed volume with command
below. The geometry must be ACIS-type geometry (i.e. imported from IGES, STEP or fastq files) This option is also
available for limited cases for facet-based surfaces.

Create {Body|Volume} Surface <surface_id_range> [HEAL|Noheal] [Keep] [Sheet]

The heal option will attempt to close small gaps in the surface; the noheal option disables this behavior. The keep option
preserves the original surfaces.

All of the surfaces must form a closed water-tight volume for this command to succeed unless the sheet option is
specified. The sheet option allows for the creation of an open body.

10. Loft Surfaces Together: A body can be "lofted" between two surfaces to form a new body. Surfaces from solid
bodies and sheet bodies may be used to create a loft body. In order to create the loft body, two surfaces coincident to the
input surfaces are created. The loft body is extruded along the shortest path between the corresponding vertices that
define the shapes of the two copied surfaces. This new body is solid. The surfaces used to create the loft body are
unchanged.

Create {Body|Volume} Loft Surface <surf1> <surf2> [Takeoff1 <value>] [Takeoff2 <value>] [Arc_length {True|FALSE}]
[Twist {TRUE|False}] [Align_direction {TRUE|False}] [Perpendicular {TRUE|False}] [Simplify {True|FALSE}]

181

Cubit 12.1 User Documentation

It is recommended that lofting only be attempted between similar surfaces. For example, lofting from a trapezoidal surface
(whose shape is defined by four end vertices) to a triangular surface (whose shape is defined by three end vertices) will
force the lofting function to transform the cross-section of the loft body in mid-extrusion, often with poor results (e.g., a

skewed or self-intersecting loft body). Attempting to loft between nearly perpendicular surfaces generally produces poor
results as well.

Lofting can be used to split a body in order to create a more structured mesh. Figure 2 below shows a single volume
swept from a large paved surface. Figure 3 shows this same volume after surfaces defined on the source and target
surfaces have been used to create a loft body. This original body was chopped with the loft body. The resulting two bodies

were merged. The yellow volume was swept as the volume in Figure 2 was but the purple volume was submapped,
producing a much more structured mesh overall.

|
L
]
1

I B

At
4

L

1]
IEmEn!
et Ll

Wl |

B B oy R :

Figure 2. Mesh before loft. Single swept volume with a large paved face.

Figure 3. Mesh after loft. The yellow volume is paved and the purple volume is submapped.
11. Thicken Surfaces: A surface body can be thickened to create a volume body. The surface can be thickened in both
directions using the "both" keyword, thickened in the direction of surface normal using a positive depth, or thickened in the
opposite direction using a negative depth. To thicken multiple surfaces, all surface normals must be consistent.

Thicken [Volume|BODY] <id> Depth <depth> [Both]

12. Sweeping a Surface to a Plane: Sweeps a surface normal to a plane and towards the plane until the swept surface
reaches the plane. See plane options for ways to describe a plane.

Sweep surface <id> target plane <options>

182

Creating Bricks

The brick is a rectangular parallelepiped.
Command

[Create] Brick {Width|X} <width> [{Depth|Y} <depth>] [{Height|Z} <height>] [Bounding Box {entity_type} <id_range>] [Tight]
[[Extended] {Percentage| Absolute} <val>]]

Notes

. A cubical brick is created by specifying only the width or x dimension.
° A brick can be specified to occupy the bounding box of one or more entities, specified on the command line.

. If the Tight option is specified with Bounding Box, the result is the smallest brick that can contain the entities
specified, which is the default behavior of the Bounding Box option.

. If the Extended option is specified with Bounding Box, the result is a brick that is extended from a "tight" brick
by the input percentage or absolute value.

° If a bounding box specification is used in conjunction with any of the other parameters (X, Y or Z), the
parameters specified override the bounding box results for that or those dimensions.

183

a1m1Cubit 12.1 User Documentation

Creating Cylinders

The cylinder is a constant radius tube with right circular ends.

Command

[Create] Cylinder [Height|Z] <val> Radius <val>

[Create] Cylinder [Height|Z] <val> Major Radius <val> Minor Radius <val>

Notes

. A cylinder may also be created using the frustum command with all radii set to the same value.
* Specifying major and minor radii can produce a cylinder with an oval cross section.

184

mCubit 12.1 User Documentation

Creating Prisms

The prism is an n-sided, constant radius tube with n-sided planar faces on the ends of the tube.
Command
[Create] Prism [Height|Z] <z-val> Sides <nsides> Radius <radius>

Notes

. The radius defines the circumradius of the n-sided polygon on the end caps.
. If a major and minor radius are used, the end caps are bounded by a circum-ellipse instead of a circumcircle.

* The number of sides of a prism must be greater than or equal to three. A prism may also be created using the
pyramid command with all radii set to the same value.

. If the Extended option is specified with Bounding Box, the result is a brick that is extended from a "tight" brick
by the input percentage or absolute value.

. If a bounding box specification is used in conjunction with any of the other parameters (X, Y or Z), the
parameters specified override the bounding box results for that or those dimensions.

185

a1m1Cubit 12.1 User Documentation

Creating Frustums

A frustum is a general elliptical right frustum, which can also be thought of as a portion of a right elliptical cone.
Command

[Create] Frustum [Height|Z] <z-height> Radius <x-radius> [Top <top_radius>]

[Create] Frustum [Height|Z] <z-height> Major Radius <radius> Minor Radius <radius> [Top <top_radius>]

Notes

. If used, Major Radius defines the x-radius and Minor Radius the y-radius.

. If used, Top Radius defines the x-radius at the top of the frustum; the top y radius is calculated based on the
ratio of the major and minor radii.

186

a1m1Cubit 12.1 User Documentation

Creating Pyramids

A pyramid is a general n-sided prism.
Command
[Create] Pyramid [Height|Z] <z-height> Sides <nsides> Radius <radius>

[Create] Pyramid [Height|Z] <z-height> Sides <nsides> [Major [Radius] <x-radius> Minor [Radius] <y-radius>] [Top <top-
x-radius>]

187

mCubit 12.1 User Documentation

Creating Spheres

The sphere command generates a simple sphere, or, optionally, a portion of a sphere or an annular sphere.

Command
[Create] Sphere Radius <radius> [Xpositive] [Ypositive] [Zpositive] [Delete] [Inner [Radius] <radius>]

Notes

. If Xpositive, Ypositive, and/or Zpositive are used, a sphere which occupies that side of the coordinate plane only
is generated, or, if the delete keyword is used, the sphere will occupy the other side of the coordinate plane(s)
specified. These options are used to generate hemisphere, quarter sphere or a sphere octant (eighth sphere).

. If the inner radius is specified, a hollow sphere will be created with a void whose radius is the specified inner
radius.

188

a1m1Cubit 12.1 User Documentation

Creating Toruses

The torus command generates a simple torus
Command
[Create] Torus Major [Radius] <major-radius> Minor [Radius] <minor-radius>

Notes

. Minor Radius is the radius of the cross-section of the torus; Major Radius is the radius of the spine of the
torus.
. The minor radius must be less than the major radius.

189

mCubit 12.1 User Documentation

Align Command

The align command is a combination of the rotate and move commands. The align command will align the surface of a
given volume with any other surface in the model, such that the surface centroids are coincident and the normals are
pointing either in the same or opposite direction (depending on their initial alignment). The align command can also align a
face of a volume with the xy, yz, and xz planes and the vertices of a volume with the x, y, and z axes.

The syntax of the command to align commands are:

Align Volume <id> Surface <surface_id> with Surface <surface_id>

Align Volume <id> {Surface <surface_id>| Vertex <vertex_id>} {{X|Y|Z Axis}{XY|XZ|YZ plane}}

This transformation is useful for aligning surfaces in preparation for geometry decomposition and aligning models for axis-
symmetric analysis.

190

mCubit 12.1 User Documentation

Cop